LIGO-G040552-00-Z The AURIGA-LIGO Joint Burst Search L. Cadonati, G. Prodi, L. Baggio, S. Heng, W. Johnson, A. Mion, S. Poggi, A. Ortolan, F. Salemi, P.

Slides:



Advertisements
Similar presentations
GWDAW9 – Annecy December 15-18, 2004 A. Di Credico Syracuse University LIGO-G Z 1 Gravitational wave burst vetoes in the LIGO S2 and S3 data analyses.
Advertisements

AURIGA-LIGO Activity F. Salemi Italy, INFN and University of Ferrara for the LIGO-AURIGA JWG 2nd ILIAS-GW Meeting, October 24th and 25th, Palma de Mallorca,
LIGO-G Z Status and Plans for the LIGO-TAMA Joint Data Analysis Patrick Sutton LIGO Laboratory, Caltech, for the LIGO-TAMA Joint Working Group.
GWDAW-8 (December 17-20, 2003, Milwaukee, Wisconsin, USA) Search for burst gravitational waves with TAMA data Masaki Ando Department of Physics, University.
LIGO-G Z Status of the LIGO-AURIGA Joint Burst Analysis L. Cadonati for the LIGO-AURIGA joint working group LSC meeting – Ann Arbor, June
LIGO-G Z Coherent Coincident Analysis of LIGO Burst Candidates Laura Cadonati Massachusetts Institute of Technology LIGO Scientific Collaboration.
G Z April 2007 APS Meeting - DAP GGR Gravitational Wave AstronomyKeith Thorne Coincidence-based LIGO GW Burst Searches and Astrophysical Interpretation.
1/25 Current results and future scenarios for gravitational wave’s stochastic background G. Cella – INFN sez. Pisa.
Francesco Salemi - London, October 26th - 27th, VIRGO-bars joint data analysis Francesco Salemi for the VIRGO-bars Collaboration.
STATUS of BAR DETECTORS G.A.Prodi - INFN and University of Trento International Gravitational Event Collaboration - 2 ALLEGRO– AURIGA – ROG (EXPLORER-NAUTILUS)
Paris, July 17, 2009 RECENT RESULTS OF THE IGEC2 COLLABORATION SEARCH FOR GRAVITATIONAL WAVE BURST Massimo Visco on behalf of the IGEC2 Collaboration.
S.Klimenko, G Z, December 21, 2006, GWDAW11 Coherent detection and reconstruction of burst events in S5 data S.Klimenko, University of Florida.
Silvia Poggi - GW burst detection strategy in non-homogeneus networks Detection strategies for bursts in networks of non-homogeneus gravitational waves.
A coherent null stream consistency test for gravitational wave bursts Antony Searle (ANU) in collaboration with Shourov Chatterji, Albert Lazzarini, Leo.
LIGO-G Z Peter Shawhan, for the LIGO Scientific Collaboration APS Meeting April 25, 2006 Search for Gravitational Wave Bursts in Data from the.
LIGO-G M GWDAW, December LIGO Burst Search Analysis Laura Cadonati, Erik Katsavounidis LIGO-MIT.
The AURIGA experiment: updates and prospects BAGGIO Lucio ICRR on behalf of AURIGA collaboration The AURIGA detector re-started data taking in Dec 2003,
LIGO-G Z Coherent Analysis of Signals from Misaligned Interferometers M. Rakhmanov, S. Klimenko Department of Physics, University of Florida,
M. Principe, GWDAW-10, 16th December 2005, Brownsville, Texas Modeling the Performance of Networks of Gravitational-Wave Detectors in Bursts Search Maria.
S.Klimenko, December 2003, GWDAW Performance of the WaveBurst algorithm on LIGO S2 playground data S.Klimenko (UF), I.Yakushin (LLO), G.Mitselmakher (UF),
Abstract: We completed the tuning of the analysis procedures of the AURIGA-LIGO joint burst search and we are in the process of verifying our results.
ILIAS WP1 – Cascina IGEC – First experience using the data of 5 bar detectors: ALLEGRO, AURIGA, EXPLORER NAUTILUS and NIOBE. – 1460.
LIGO-G Z April 2006 APS meeting Igor Yakushin (LLO, Caltech) Search for Gravitational Wave Bursts in LIGO’s S5 run Igor Yakushin (LLO, Caltech)
Upper Limits from LIGO and TAMA on Gravitational-Wave Bursts on Gravitational-Wave Bursts Patrick Sutton (LIGO laboratory, Caltech), Masaki Ando (Department.
S.Klimenko, August 2005, LSC, G Z Constraint likelihood analysis with a network of GW detectors S.Klimenko University of Florida, in collaboration.
Amaldi-7 meeting, Sydney, Australia, July 8-14, 2007 LIGO-G Z All-Sky Search for Gravitational Wave Bursts during the fifth LSC Science Run Igor.
G030XXX-00-Z Excess power trigger generator Patrick Brady and Saikat Ray-Majumder University of Wisconsin-Milwaukee LIGO Scientific Collaboration.
LIGO-G Z Results of the LIGO-TAMA S2/DT8 Joint Bursts Search Patrick Sutton LIGO Laboratory, Caltech, for the LIGO-TAMA Joint Working Group.
1 An example or real data analysis: the VIRGO-bars search for bursts Andrea Viceré for VIRGO – Auriga - Rog.
1 Status of Search for Compact Binary Coalescences During LIGO’s Fifth Science Run Drew Keppel 1 for the LIGO Scientific Collaboration 1 California Institute.
LIGO-G Data Analysis Techniques for LIGO Laura Cadonati, M.I.T. Trento, March 1-2, 2007.
LIGO- G D Experimental Upper Limit from LIGO on the Gravitational Waves from GRB Stan Whitcomb For the LIGO Scientific Collaboration Informal.
1 Laura Cadonati, MIT For the LIGO Scientific Collaboration APS meeting Tampa, FL April 16, 2005 LIGO Hanford ObservatoryLIGO Livingston Observatory New.
LIGO-G Z The Q Pipeline search for gravitational-wave bursts with LIGO Shourov K. Chatterji for the LIGO Scientific Collaboration APS Meeting.
T.Akutsu, M.Ando, N.Kanda, D.Tatsumi, S.Telada, S.Miyoki, M.Ohashi and TAMA collaboration GWDAW10 UTB Texas 2005 Dec. 13.
S.Klimenko, G Z, December 2006, GWDAW11 Coherent detection and reconstruction of burst events in S5 data S.Klimenko, University of Florida for.
S.Klimenko, G Z, December 21, 2006, GWDAW11 Coherent detection and reconstruction of burst events in S5 data S.Klimenko, University of Florida.
Joint LIGO-Virgo data analysis Inspiral and Burst Summary of the first project results Overview of the future activities M.-A. Bizouard (LAL-Orsay) on.
S.Klimenko, G Z, March 20, 2006, LSC meeting First results from the likelihood pipeline S.Klimenko (UF), I.Yakushin (LLO), A.Mercer (UF),G.Mitselmakher.
GWDAW10, UTB, Dec , Search for inspiraling neutron star binaries using TAMA300 data Hideyuki Tagoshi on behalf of the TAMA collaboration.
LIGO-G Z Confidence Test for Waveform Consistency of LIGO Burst Candidate Events Laura Cadonati LIGO Laboratory Massachusetts Institute of Technology.
LIGO-G Z GWDAW9 December 17, Search for Gravitational Wave Bursts in LIGO Science Run 2 Data John G. Zweizig LIGO / Caltech for the LIGO.
15-18 December 2004 GWDAW-9 Annecy 1 All-Sky broad band search for continuous waves using LIGO S2 data Yousuke Itoh 1 for the LIGO Scientific Collaboration.
LIGO-G Z Upper Limits from LIGO and TAMA on Gravitational-Wave Bursts Patrick Sutton LIGO Laboratory, Caltech for the LIGO and TAMA Collaborations.
LIGO-G All-Sky Burst Search in the First Year of the LSC S5 Run Laura Cadonati, UMass Amherst For the LIGO Scientific Collaboration GWDAW Meeting,
Results From the Low Threshold, Early S5, All-Sky Burst Search Laura Cadonati for the Burst Group LSC MIT November 5, 2006 G Z.
Peter Shawhan The University of Maryland & The LIGO Scientific Collaboration Penn State CGWP Seminar March 27, 2007 LIGO-G Z Reaching for Gravitational.
LIGO-G Z Status of the LIGO-TAMA Joint Bursts Search Patrick Sutton LIGO Laboratory, Caltech, for the LIGO-TAMA Joint Working Group.
LIGO-G Z Results of the LIGO-TAMA S2/DT8 Joint Bursts Search Patrick Sutton LIGO Laboratory, Caltech, for the LIGO-TAMA Joint Working Group.
TAUP 2007, Sendai, September 12, 2007 IGEC2 COLLABORATION: A NETWORK OF RESONANT BAR DETECTORS SEARCHING FOR GRAVITATIONAL WAVES Massimo Visco on behalf.
LIGO-G Z TFClusters Tuning for the LIGO-TAMA Search Patrick Sutton LIGO-Caltech.
S5 First Epoch BNS Inspiral Results Drew Keppel 1 representing the Inspiral Group 1 California Institute of Technology Nov LSC Meeting MIT, 4 November.
Status of the LIGO-AURIGA Joint Burst Analysis F. Salemi Italy, INFN and University of Ferrara on behalf of the AURIGA Collaboration and the LIGO Scientific.
GWDAW11 – Potsdam Results by the IGEC2 collaboration on 2005 data Gabriele Vedovato for the IGEC2 collaboration.
Igor Yakushin, December 2004, GWDAW-9 LIGO-G Z Status of the untriggered burst search in S3 LIGO data Igor Yakushin (LIGO Livingston Observatory)
LIGO-G Z Searching for gravitational wave bursts with the new global detector network Shourov K. Chatterji INFN Sezioni di Roma / Caltech LIGO.
LIGO-G Z Status of the LIGO-TAMA Joint Bursts Search Patrick Sutton LIGO Laboratory, Caltech, for the LIGO-TAMA Joint Working Group.
The first AURIGA-TAMA joint analysis proposal BAGGIO Lucio ICRR, University of Tokyo A Memorandum of Understanding between the AURIGA experiment and the.
Abstract: We completed the tuning of the analysis procedures of the AURIGA-LIGO joint burst search and we are in the process of verifying our results.
LIGO-G Z Peter Shawhan for the LSC-Virgo Burst Analysis Working Group LSC-Virgo Meeting July 23, 2007 Eyes Wide Open: Searching for Gravitational.
Palma de Mallorca - October 24 th, 2005 IGEC 2 REPORT International Gravitational Events Collaboration ALLEGRO– AURIGA – ROG (EXPLORER-NAUTILUS)
The Q Pipeline search for gravitational-wave bursts with LIGO
Igor Yakushin, LIGO Livingston Observatory
Searching for Gravitational-Wave Bursts (GWBs) associated with Gamma-Ray Bursts (GRBs) during the LIGO S5 run Isabel Leonor University of Oregon (for the.
M.-A. Bizouard, F. Cavalier
Background estimation in searches for binary inspiral
Coherent Coincident Analysis of LIGO Burst Candidates
Status and Plans for the LIGO-TAMA Joint Data Analysis
Joint bar-IFO observations
Presentation transcript:

LIGO-G Z The AURIGA-LIGO Joint Burst Search L. Cadonati, G. Prodi, L. Baggio, S. Heng, W. Johnson, A. Mion, S. Poggi, A. Ortolan, F. Salemi, P. Sutton, G. Vedovato, M. Zanolin GWDAW-9 December 18, 2004 Annecy, France

LIGO-G Z GWDAW-9 December , Annecy, France2 MOU for S3/AU1 burst analysis signed in July 2004 »develop methodologies for bar/interferometer searches »implement on real data a time coincidence, triggered based searches »explore coherent methods Joint Working Group composition: »AURIGA: G. Prodi, L. Baggio, A. Mion, A. Ortolan, S. Poggi, F. Salemi, G. Vedovato »LSC: L. Cadonati, S. Heng, W. Johnson, P. Sutton, M. Zanolin Target analysis completion: spring 2005 AURIGA-LIGO First Coincidence Run AURIGA AU1 run: Dec – Jan LIGO S3 run: Oct – Jan hours 4-fold coincidence 175 hours 3-fold coincidence

LIGO-G Z GWDAW-9 December , Annecy, France3 Sensitivity Spectra single-sided PSD best performance during the AU1 and the S3 run

LIGO-G Z GWDAW-9 December , Annecy, France4 Time Variability h rss of Sine-Gaussian pulses with: f 0 =900Hz Q=9 SNR  =1

LIGO-G Z GWDAW-9 December , Annecy, France5 Geometry Considerations Circular polarization: f AU f LHO f 2 = F F x 2 antenna pattern F  = f cos(2  )  = angle between wave frame and earth frame Linear polarization:  f 2 =F + 2 +F x 2 (  independent) LIGO Hanford AURIGA

LIGO-G Z GWDAW-9 December , Annecy, France6 Sky Coverage for LLO+LHO+AURIGA assumption: 1.gravitational waves are linearly polarized 2.AURIGA sensitivity is 1/3 of the LLO/LHO sensitivities required: 1.F (  ) > 0.1 at LLO, LHO 2.F (  ) > 0.3 at AURIGA the color scale represents the percentage of detectable polarizations

LIGO-G Z GWDAW-9 December , Annecy, France7 Scientific Motivation for a Joint Burst Analysis 1.False alarm rate suppression 2.Increased effective observation times »i.e. combining all possible coincidences of 3 out of 4 or more detectors 3.Increased detection confidence »waveform parameters can be estimated with at least 3 locations and enough time resolution (Gursel-Tinto, 1989)

LIGO-G Z GWDAW-9 December , Annecy, France8 General Strategy for a Trigger-based Analysis Data quality and veto performed “at home” Exchange SINGLE DETECTOR triggers »peak time and its error »homogenously defined amplitude A (BW Hz and broadband) and its error Exchange A T (minimum detectable) versus time Blind analysis »all tuning is performed on time-shifted data before “opening the box” Compare the measured test statistic to its background distribution »background measured on a different set of time shifts Result interpretation »directional analysis (optimized) »all-sky search (using Monte Carlo for source position distribution) »Results interpreted for sine-gaussians, damped sinusoids, Lazarus waveforms for BH-BH mergers (10-20 M ๏ )

LIGO-G Z GWDAW-9 December , Annecy, France9 Method 1: Directional Analysis IGEC-style analysis, on a telescope of directions (see talk by Poggi) New: account for polarizations Use consistent definition of amplitude in all detectors. Threshold on the event amplitude at each detector, scaled by the antenna pattern for the given direction. Require coincidence of at least 3 detectors.

LIGO-G Z GWDAW-9 December , Annecy, France10 Method 2: “Eyes Wide Open” No assumptions are made on direction or waveform. A CorrPower search (see poster) is applied to the LIGO interferometers around the time of the AURIGA triggers. Efficiency for classes of waveforms and source population is performed through Monte Carlo simulation, LIGO-style (see talks by Zweizig, Yakushin, Klimenko). The accidental rate (background) is obtained with unphysical time-shifts between data streams.

LIGO-G Z GWDAW-9 December , Annecy, France11 Sample Performance for Method 2 LIGO: SIMULATED white gaussian noise matching median BLRMS during the AURIGA-LIGO coincidence run AURIGA: Monte Carlo average detection efficiency using  -filter on sine-gaussians with f 0 =900Hz Q=9 and SNR>4 using ACTUAL DATA (no epoch veto) PRELIMINARY

LIGO-G Z GWDAW-9 December , Annecy, France12 4.7x /sqrt(Hz) 1.5x /sqrt(Hz) AURIGA on real data LIGO on white gaussian noise uniform polarization all-sky distribution over the AU1/S3 2-week period SNR=4 threshold on AURIGA Correlation confidence threshold on CorrPower as in the S2 analysis (  >4) Network efficiency ~ product of the two curves Sample Performance for Method 2 LIGO and AURIGA efficiency for sine-gaussians with f 0 =900Hz Q=9 The LIGO curve was obtained on simulated data: a performance degradation is expected on real data

LIGO-G Z GWDAW-9 December , Annecy, France13 Summary and Outlook A working group for the joint burst search in LIGO and AURIGA has been formed, with the purpose to: »develop methodologies for bar/interferometer searches, to be tested on real data »time coincidence, triggered based search on a 2-week coincidence period (Dec 24, 2003 – Jan 9, 2004) »explore coherent methods Simulations and methodological studies are in progress. Planning on first event list exchange within the next two months, for a trigger-based burst analysis.