Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

The Radioactive Beam Program at Argonne
First Year Seminar: Strontium Project
Ra-225: The Path to a Next Generation EDM Experiment
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Search for the Schiff Moment of Radium-225
electrostatic ion beam trap
Deeply Bound Pionic States in Sn at RIBF N. Ikeno (Nara Women’s Univ. M1) J. Yamagata-Sekihara (IFIC, Valencia Univ.) H. Nagahiro (Nara Women’s Univ.)
Nuclear Physics with ELI, Population/depopulation of Isomers: modification of nuclear level lifetime F. Gobet, C. Plaisir, F. Hannachi, M. Tarisien, M.M.
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
6/17/20141 Absolute nuclear charge radii for elements without stable isotopes via precision x-ray spectroscopy of lithium-like ions Andrew Senchuk, Gerald.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
The LaSpec project. At FAIR… Cheapest(?),Fully destripped…
Studying a strontium MOT – group meeting Studying a strontium MOT James Millen.
1 Femtosecond Time and Angle-Resolved Photoelectron Spectroscopy of Aqueous Solutions Toshinori Suzuki Kyoto University photoelectron.
Chad Orzel Union College Physics Radioactive Background Evaluation by Atom Counting C. Orzel Union College Dept. of Physics and Astronomy D. N. McKinsey.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
Collinear laser spectroscopy of 42g,mSc
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
N=126 factory Guy Savard Scientific Director of ATLAS Argonne National Laboratory & University of Chicago ATLAS Users Meeting ANL, May 15-16, 2014.
Helium Spectroscopy Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**,
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
TITAN Mass Measurement of 11 Li (and other halo nuclei) Ryan Ringle, TRIUMF.
Laser Cooling 1. Doppler Cooling – optical molasses. 2. Magneto-optical trap. 3. Doppler temperature.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Fundamental interaction and nuclear structure studies with atom traps Peter Müller.
Polarized 11 Li beam at TRIUMF and its application for spectroscopic study of the daughter nucleus 11 Be 1. Physics motivation new  delayed decay spectroscopy.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
Sizes. W. Udo Schröder, 2007 Nuclear Sizes 2 Absorption Probability and Cross Section Absorption upon intersection of nuclear cross section area  j beam.
Gross Properties of Nuclei
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Presentation by T. Gogami 2015/6/15 (Mon). Equation state of neutron matter.
M. Wakasugi, et al., Nucl. Instr. and Meth. A 532 (2004) Total length 650mm Trapping region 〜 260mm 42 thin electrodes are stacked every.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
1 stephan ettenauer for the TITAN collaboration Experimental Program on Halo Nuclei with non-accelerated Beams at TRIUMF Weakly Bound Systems in Atomic.
The Most Exotic Nuclei on Earth: Precision Experiments on Halo Nuclei Maxime Brodeur UBC graduate student, TRIUMF for the TITAN collaboration CANADA’S.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Quantum interference phenomenon Quantum interference phenomenon in the cold atomic cascade system $$ : National Science Council and National Space Program.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
High-resolution experiments on projectile fragments – A new approach to the properties of nuclear matter A. Kelić 1, J. Benlliure 2, T. Enqvist 1, V. Henzl.
QUEST - Centre for Quantum Engineering and Space-Time Research 1 A continuous loading scheme for a dipole trap.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
PST05, November 14-17, 2005 at Tokyo 1 Design of a polarized 6 Li 3+ ion source and its feasibility test A. Tamii Research Center for Nuclear Physics,
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
The BeTINa Collaboration
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Univ. Tokyo & RIKEN Y. Yamazaki 2008/7/17 EMMI kick-off
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
In-source laser spectroscopy of Pb, Bi and Po isotopes at ISOLDE Charge Radii around Z = 82 and N = 104 In-source resonant photoionization spectroscopy.
John Arrington Argonne National Lab
Resonant dipole-dipole energy transfer
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
A novel trap for electron scattering off short-lived exotic nuclei
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Emmanuel Clément IN2P3/GANIL – Caen France
Flavor dependence of the EMC effect
Investigation of 178Hf – K-Isomers
Presentation transcript:

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics

2 Å e-e- Ionization Energy of Helium Atom Level 2 3 S 1 Calculation ± 6 MHz Experiment MHz Gordon Drake, Phys. Scripta (1999) Helium Atom fm

3 Quantum Monte Carlo Calculations of Light Nuclei Pieper & Wiringa. Ann. Rev. Nucl. Part. Sci. (2001)

4 Halo Nuclei 6 He and 8 He Borromean RingsBorromean Nucleus 4 He 8 He 6 He Quantum Monte Carlo calculation Proton Neutron

5 Hadronic Probe: Scattering of 6 He & 8 He Beams Tanihata et al, Phys Lett (1985) LBNL Alkhazov et al, Nucl Phys (2002) GSI Elastic and inelastic collision: He on C, B Elastic collision: He on H, 700 MeV/u Matter distribution, matter radii 18 O 9 Be 6 He 12 C 6 He  1H1H

6 Atomic Energy Levels of Helium 23S123S1 11S011S0 389 nm 1083 nm 2 3 P 0,1, eV 3 3 P 0,1,2 He energy level diagram 100 ns 100 ns  1.6 MHz Single photon kick  0.1 m/s Transition rate ~ 4 x 10 6 /s Acceleration ~ 4 x 10 5 m/s 2 Cooling & Trapping at 1083 nm Single photon kick  0.3 m/s Doppler shift  400 kHz Spectroscopy at 389 nm A glow discharge He gas cell

7 Field (Volume) Shift Mass shift Field shift r E s p V ~ - 1/r

8 Laser Cooling and Trapping Magneto-Optical Trap (MOT) Cooling: Temperature~ 1 mK,  avoid Doppler shift / width Long observation time: 100 ms Spatial confinement: trap size < 1 mm  single atom sensitivity Selectivity:  no isotopic / isobaric interference Technical challenges: Short lifetime, small samples (10 6 atoms/s available) Metastable efficiency ~ Precision requirement (~100 kHz)

9 8 GANIL by Antonio Villari et al. Salle D2 13 C He-8: 5 x 10 5 s -1 He-6: 1 x 10 8 s -1 8 He 20 keV 8 He thermal Laser System MOT ECR Ion Source Mass separator 20 keV He + 1 GeV, 400 pnA

10 Atom Trapping of 6 He & 8 He at GANIL ~1x He + /s ~5x He + /s PMT Zeeman slower MOT Transverse cooling 389 nm 1083 nm Atom Trap Setup RF - Discharge Xe Spectroscopy 389 nm 23S123S1 11S011S0 2 3 P P 2 Trap 1083 nm He level scheme Capture efficiency 1x10 -7 Source 6 He ~ 5x10 7 /s 8 He ~ 1x10 5 /s Trap 6 He ~ 5 /s 8 He ~ 1x10 -2 /s One trapped 6 He atom

11 He-8 Trapped! First He-8 Atom June 15 th 2007 t f 50 kHz 6 He ~30 6 He atoms/s 110 kHz 60 atoms 8 He ~30 8 He atoms/hr

12 8 He 6 He Isotope Shift and Field Shift : J - Dependence? 2 3 S nm 3 3 P 0,1,2 J=2 J=1 J=0 J=1 Wang 04 Argonne J=1 3 1 P 1

13 6 He & 8 He RMS Charge Radii 6 He 8 He Field Shift, MHz-1.464(34)-1.026(63) RMS R CH, fm2.072(9)1.961(16) Total Uncertainty0.4 %0.9 % - Statistical0.1 %0.6 % - Trap Systematics0.3 %0.6 % - Mass Systematics0.1 %0.0 % - He-4: 1.681(4) fm0.1 % Mueller et al., PRL (2007) + Ryjkov et al., PRL (2008): He-8 mass + Sick PRC (2008): He-4 Charge Radius RpRp rcrc RnRn -  SO - MEC = 0.766(12) fm 2 = (5) fm 2

14 6 He & 8 He RMS Point Proton and Matter Radii Wang et al., PRL (2004) Mueller et al., PRL (2007)

15 He-6 Collaboration P. Mueller, L.-B. Wang, K. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O’Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang - Physics, Argonne G. W. F. Drake - Univ of Windsor, Canada He-8 Collaboration P. Mueller, K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, T. P. O'Connor, I. Sulai - Physics, Argonne; M.- G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari - GANIL, Caen, France G. W. F. Drake - Univ of Windsor, Canada L.-B. Wang – Los Alamos Lab