FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
Millimeter-wave Spectroscopy of the Tunneling-rotation Transitions of the D 2 CCD radical M. Ohtsuki, M. Hayashi, K. Harada, K. Tanaka Department of Chemistry,
Millimeter-Wave Studies of the Isotopologues of IZnCH 3 (X 1 A 1 ) : Geometric Parameters and Evidence for Zinc Insertion M. P. BUCCHINO and L. M. ZIURYS.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
June 22, th Symp. on Molec. Spectrosc. Laboratory Detection of ClZnCH 3 (X 1 A 1 ): Further Evidence for Zinc Insertion Matthew P. Bucchino and.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
The Millimeter/Submillimeter Spectrum of the CCP (X 2  r ) Radical DeWayne T. Halfen Steward Observatory, Arizona Radio Observatory, University of Arizona.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Nicholas R. Walker, Susanna L. Stephens, David P. Tew and Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University,
PURE ROTATIONAL SPECTRA OF THE REACTION PRODUCTS OF LASER ABLATED THORIUM METAL AND OXYGEN MOLECULES ENTRAINED WITHIN SUPERSONIC EXPANSIONS OF NOBLE GASES.
June 18, nd Symp. on Molec. Spectrosc. The Pure Rotational Spectra of VN (X 3  r ) and VO (X 4  - ): A Study of the Hyperfine Interactions Michael.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of CrS (X 5  r ): Continued Studies of the 3d Transition.
HYPERFINE SPLITTING AND ROTATIONAL ANALYSIS OF THE DIATOMIC MOLECULE ZINC MONOSULFIDE, ZnS DANIEL J. FROHMAN, G. S. GRUBBS II AND STEWART E. NOVICK O.S.U.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
62 nd International Symposium on Molecular Spectroscopy June 18-22, 2007 The Pure Rotational Spectra of FeCN (X 6  i ) and FeNC (X 6  i ): It Had to.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
A New E-Band (60 – 90 GHz) Fourier Transform Millimeter-wave Spectrometer DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department of Astronomy.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
65 th International Symposium on Molecular Spectroscopy June 21, 2010 Lindsay N. Zack Brent J. Harris Matthew P. Bucchino Ming Sun Lucy M Ziurys Department.
63rd Symposium on Molecular Spectroscopy June 18, 2008 Submillimeter Spectroscopy of ZnO (X 1  + ) Lindsay N. Zack Robin L. Pulliam Lucy M. Ziurys Departments.
June 21, th International Symposium on Molecular Spectroscopy Fourier-Transform Microwave Spectroscopy of FeCN (X 4  i ): Confirmation of the.
The Pure Rotational Spectrum of TiCl + (X 3  r ) by Velocity Modulation Spectroscopy DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department.
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
June 20, rd International Symposium On Molecular Spectroscopy Microwave Spectrum And Structure Determination Of the CCP ( X 2 П Ω ) Radical Ming.
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of TiS (X 3  r ) in all Three Spin Components Robin.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
HIGH RESOLUTION SPECTROSCOPY OF THE B 2 A 1 - X 2 A 1 TRANSITION OF CaCH 3 and SrCH 3 P. M. SHERIDAN, M. J. DICK, J. G. WANG AND P. F. BERNATH University.
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
Dept. of Chemistry University of Arizona A. Janczyk L. M. Ziurys The Millimeter/Submillimeter Spectrum of AlSH (X 1 A) : Further Investigation of the Metal.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
The Submillimeter/THz Spectrum of AlH (X 1 Σ + ), CrH (X 6 Σ + ), and SH + (X 3 Σ - ) DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry and.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
The Pure Rotational Spectrum of KO
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
Characterisation and Control of Cold Chiral Compounds
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
THE STRUCTURE OF PHENYLGLYCINOL
The Pure Rotational Spectrum of FeO+ (X6S+)
The rotational spectrum of the urea isocyanic acid complex
Fourier Transform Microwave Spectroscopy Of Sc13C2 and Sc12C13C: Establishing an Accurate Structure Of ScC2 (X2A1) ~ Sc C Mark A. Burton, DeWayne T. Halfen,
Michael A. Flory Shawn K. McLamarrah Lucy M. Ziurys
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Presentation transcript:

FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry and Biochemistry, Canisius College M. P. BUCCHINO and L. M. ZIURYS Department of Chemistry, Astronomy and Steward Observatory, University of Arizona

Metal Hydrosulfides: Previous Work

Alkali Metal Hydrosulfides: Previous Work Millimeter-Wave Spectra: −LiSH, 6 LiSH, and LiSD (Janczyk and Ziurys) −NaSH and NaSD (Kagi and Kawaguchi) Bent Molecular Geometries r 0 Structural Parameters Determined No Hyperfine Splitting (Alkali Metal or Deuterium) Resolved KSH and KSD (no previous experimental work)

FTMW and Alkali Metal Hydrosulfides Further Investigation of Alkali Metal Hydrosulfides Measure metal hyperfine parameters to investigate metal-ligand bonding character Experimentally detect KSH and KSD, determine geometry, structural parameters and hyperfine constants How? Using FTMW and Discharge Assisted Laser Ablation Build on recent study of LiCCH, NaCCH, KCCH and deuterium isotopologues

Fourier Transform Microwave Spectrometer 4 – 60 GHz Cyropumped vacuum chamber Fabry-Perot cavity Supersonic jet 40° relative to optical axis 400 kHz scan increments Ziurys Laboratory FTMW

Fourier Transform Microwave Spectrometer Ablation Laser Molecular Jet Cavity Mirror

Discharge Assisted Laser Ablation 35 psi backing pressure (open 750  s) Ablation laser: Nd:YAG (532nm, 200 mJ per pulse; 10 Hz rep rate; 1200  s delay) DC discharge V (1400  s) shots averaged Alkali metal vapor reacted with 0.25% H 2 S or D 2 S in Ar

Alkali Metal Rods Al support rod 3 cm long notch, diameter 2 mm smaller Li, Na and K pressed into notch under Ar Only alkali metal portion ablated

Initial Search: NaSH Millimeter-wave data of NaSH used to predict frequencies of low J transitions Metal hyperfine constants from alkali metal acetylides used to estimate hyperfine splittings I = 3/2 (Li, Na, K) F = J + I

NaSH (X 1 A ʹ ) Spectrum ~ J = 4  3 (K a = 0) F = 3  3 F = 5  5 F = 5  4 6  5 F = 4  3 3  2

Lines and Assignments NaSH (X 1 A ʹ ) (K a = 0) J'  J" F'  F" obs  obs -  calc < ~

Initial Search: KSH Initial Rotational Constants −Scaled M-S bond length from alkali metal sulfides −Used S-H bond length and M-S-H angle from LiSH and NaSH Initially searched 10 MHz centered on J = 1  0 (K a = 0) rotational transition

KSH (X 1 A ʹ ) Spectrum J = 7  6 (K a = 0) F = 7  6 6  5 F = 9  8 8  7 Frequency (MHz) ~

Lines and Assignments KSH (X 1 A ʹ ) (K a = 0) J'  J" F'  F" obs  obs -  calc ~

MSH Rotational Constants Parameter (MHz)NaSH [1]NaSH [2]KSH A (4.9) (7.5) (fixed) B (36) (43) C (24) (62) (B+C)/ (42)  aa (M) -5.23(39)-5.30(22) rms [1] Kagi and Kawaguchi, ApJ 491, L129 (1997) [2] Combined fit with previous millimeter-wave data; 3  uncertainties Nuclear spin-rotation could not be reliably determined for either metal

KSD Spectrum KSD  J = 8  7 and 7  6 (K a = 0,  F = +1); deuterium hf not resolved J = 7  6 (K a = 0) F 1 = 6  5 5  4 F 1 = 8  7 7  6 Frequency (MHz) I 1 = 3/2 (M) I 2 = 1 (D) F 1 = J + I 1 F = F 1 + I 2

Constants MSD [1] Kagi and Kawaguchi, ApJ 491, L129 (1997) [2] Combined fit with previous millimeter-wave data; 3  uncertainties Nuclear spin-rotation could not be reliably determined for either metal Deuterium hf not yet reliably determined Parameter (MHz)NaSD [1]NaSD [2]KSD A (5.4) (9.9) (fixed) B (54) (120) C (15) (108) (B+C)/ (45)  aa (M) (40)-5.7 (1.3) rms

Quantum Calculations LiSH [1]LiSH [2]NaSH [1]NaSH [2,3]KSH [1] M-S (Å) S-H (Å) M-S-H (°) [1] CCSD(T)/ G(3df,2pd) Geometric Parameters [2] Janczyk and Ziurys, CPL 365, 514 (2002), r 0 structure [3] Kagi and Kawaguchi, ApJ 491, L129 (1997), r 0 structure Lowest energy geometry for KSH: bent SpeciesKSH [1]KSHKSD [1]KSD (B+C)/2 (MHz) (42) (45)

Hyperfine Parameters (MHz) Species 7 Li 23 Na 39 K MF (12) (15) (10) M 35 Cl (50) (60) (3) MOH0.2958(15)-7.584(52)-7.454(52) MBH (31)-4.256(24) MCCH0.378(47)-7.264(20)-6.856(18) MSH -5.23(26)-5.30(22) Nuclear quadrupole coupling small in magnitude and similar to other alkali- containing molecules  consistent with M + L - structure SpeciesMSH LiSH NaSH KSH HF/ G(3df,2pd)//CCSD(T)/ G(3df,2pd) Mulliken Atomic Charges

Future Work K a = 1 components of MSH and MSD species LiSH Further investigate ionic/ covalent bonding character of other alkali metal containing molecules Funding : Canisius College & NSF David Ewing: Quantum Calculations