3. Logic Gate 3.1 Introduction static, fully complementary CMOS psudo-nMOS, domino logic 3.2 Combinational Logic Functions combinational logic ---- specification expression logic gate networks ---- implementation area, delay, power ---- costs
literal [Completeness] Function {|}=NAND function: complete 1:a|(a|a) = a|a’ = 1 0:{a|(a|a}|{a|(a|a)} = 1|1 = 0. a’:a|a = a’. ab:(a|b)|(a|b) = ab a+b:(a|a)|(b|b) = a’|b’=a+b NOR function: complete AND and OR function: not complete [Irredundant] no literal can be removed. redundant Ab+ab’=a
3.3 Static Complementary Gates Gate Structure Pullup network (pMOS) output is connected to VDD Pulldown network (nMOS) Output is connected to VSS VDD VSS
Pullup network (pMOS) output is connected to VDD when ab=0. Pulldown network (nMOS) Output is connected to VSS when ab=1. VDD VSS CMOS NAND
Pullup network (pMOS) output is connected to VDD when a+b=0. Pulldown network (nMOS) Output is connected to VSS when a+b=1. VDD VSS CMOS NOR
Static Complementary gate [a(b+c)]’ Dual graph
And Or Inverter (AOI) gate (ab+c)’
3.3.2 Basic Gate Layouts Layout of Inverter
Layout of NAND gate
Layout of NOR gate
Layout of a wide transistor by split into two sections.
3.3.3 Logic Levels VOH: minimum voltage output for logic 1. VOL: maximum voltage output for logic 0. VIH: minimum voltage input for logic 1. VIL: maximum voltage input for logic 0. VOL < VIL VOH > VIH
Minimum size transistors VIL VIH VOL VOH Noise Margin NML = VIL-VOL NMH = VOH-VIH
3.3.4 Delay
3.3.5 Power Consumption
Speed-power product = power-delay product SP=(1/f)P=CV The Speed-Power Product
3.3.7 Layout and Parasitics Resistance parastics
3.3.8 Driving Large Loads Alpha=(Cbig/Cg)(1/n) Ttot = Nopt=
Delta1=r1 x (C1+---+Cn) =n rc Delta2=r2 x (C Cn) =(n-1)rc DeltaN=rn x Cn =rc total=Delta DeltaN =n(n+1)/2 x rc 3.4 Wires and Delay Elmore Delay Model
3.4.2 Wire Sizing Optimum-shaped wire
3.4.3 RC Trees
3.5 Switch Logic Logic 0 transfer Logic 1 transfer
3.6 Alternative Gate Cirucits Pseudo-nMOS Logic
3.6.2 DCVS (Differential Cascaded voltages switch logic) Logic
3.6.3 Domino Logic
Successive evaluation in a domino logic network
Charge sharing