Seeding of free electron lasers by various techniques A. Meseck.

Slides:



Advertisements
Similar presentations
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Advertisements

Soft X-ray Self-Seeding
LC-ABD P.J. Phillips, W.A. Gillespie (University of Dundee) S. P. Jamison (ASTeC, Daresbury Laboratory) A.M. Macleod (University of Abertay) Collaborators.
05/03/2004 Measurement of Bunch Length Using Spectral Analysis of Incoherent Fluctuations Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
Linear Collider Bunch Compressors Andy Wolski Lawrence Berkeley National Laboratory USPAS Santa Barbara, June 2003.
Soft X-ray light sources Light Sources Ulrike Frühling Bad Honnef 2014.
Sub-femtosecond bunch length diagnostic ATF Users Meeting April 26, 2012 Gerard Andonian, A. Murokh, J. Rosenzweig, P. Musumeci, E. Hemsing, D. Xiang,
E. Schneidmiller and M. Yurkov (SASE & MCP) C. Behrens, W. Decking, H. Delsim, T. Limberg, R. Kammering (rf & LOLA) N. Guerassimova and R. Treusch (PGM.
The BESSY Soft X-Ray SASE FEL (Free Electron Laser)
Performance Analysis Using Genesis 1.3 Sven Reiche LCLS Undulator Parameter Workshop Argonne National Laboratory 10/24/03.
A. Zholents, July 28, 2004 Timing Controls Using Enhanced SASE Technique *) A. Zholents or *) towards absolute synchronization between “visible” pump and.
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
Spontaneous Radiation at LCLS Sven Reiche UCLA - 09/22/04 Sven Reiche UCLA - 09/22/04.
FEL simulation code FAST Free-Electron Laser at the TESLA Test Facility Generic name FAST stands for a set of codes for ``full physics'' analysis of FEL.
07/27/2004XFEL 2004 Measurement of Incoherent Radiation Fluctuations and Bunch Profile Recovery Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
The impact of undulators in an ERL Jim Clarke ASTeC, STFC Daresbury Laboratory FLS 2012, March 2012.
W.S. Graves1 Seeding for Fully Coherent Beams William S. Graves MIT-Bates Presented at MIT x-ray laser user program review July 1, 2003.
+ SwissFEL Introduction to Free Electron Lasers Bolko Beutner, Sven Reiche
A. Doyuran, L. DiMauro, W. Graves, R. Heese, E. D. Johnson, S. Krinsky, H. Loos, J.B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, Y. Shen, J.
R&D Towards X-ray Free Electron Laser Li Hua Yu Brookhaven National Laboratory 1/23/2004.
Free Electron Lasers (I)
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Free-Electron Laser at the TESLA Test Facility More than 50 institutes from 12 countries are involved in the TESLA Project The TESLA Collaboration: Three.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
SFLASH  SASE interference setup & optics rough estimation 1d estimation 3d estimation summary.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
The ORS at FLASH and sFLASH Peter van der Meulen Stockholm University Div. Molecular Physics FLS2010, March 1-5, 2010, 48 th ICFA Advanced Beam Dynamics.
External Seeding Approaches: S2E studies for LCLS-II Gregg Penn, LBNL CBP Erik Hemsing, SLAC August 7, 2014.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
External Seeding Approaches for Next Generation Free Electron Lasers
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
Singel pass FELs for ERL. X-RAY FELS BASED ON ERL FACILITIES A. Meseck, C. Mayes F. Löhl G. Hoffstätter.
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
J. Wu March 06, 2012 ICFA-FLS 2012 Workshop Jefferson Lab, Newport News, VA Tolerances for Seeded Free Electron Lasers FEL and Beam Phys. Dept. (ARD/SLAC),
Topic Nine: Wiggler to FELs UW Spring 2008 Accelerator Physics J. J. Bisognano 1 Accelerator Physics Topic IX Wigglers, Undulators, and FELs Joseph Bisognano.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Prebunching electron beam and its smearing due to ISR-induced energy diffusion Nikolai Yampolsky Los Alamos National Laboratory Fermilab; February 24,
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Pendulum Equations and Low Gain Regime Sven Reiche :: SwissFEL Beam Dynamics Group :: Paul Scherrer Institute CERN.
What did we learn from TTF1 FEL? P. Castro (DESY).
E. Schneidmiller and M. Yurkov FEL Seminar, DESY April 26, 2016 Reverse undulator tapering for polarization control at X-ray FELs.
Emittance-exchange-based high harmonic generation scheme for FEL JIANG Bocheng SINAP 2012 July 18~20 Lanzhou China 2012 Deflecting/Crabbing Cavity Applications.
Temporal overlapping for HHG- seeded EUV-FEL operation by using EOS-based timing-drift controlling system H. Tomizawa 1,4 *, S. Matsubara 1, T. Togashi.
Production of coherent X-rays with a free electron laser based on optical wiggler A.Bacci, M.Ferrario*, C. Maroli, V.Petrillo, L.Serafini Università e.
E. Schneidmiller and M. Yurkov Harmonic Lasing Self-Seeded FEL FEL seminar, DESY Hamburg June 21, 2016.
Harmonic Generation in a Self-Seeded Soft X-Ray LCLS-II J. Wu Feb. 24, 2010.
Free Electron Laser Studies
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
Seeding in the presence of microbunching
Eduard Prat / Sven Reiche :: Paul Scherrer Institute
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Ultrashort (few cycles) Pulse Generation in (IR-THz) FELs
Challenges in Simulating EEHG
Paul Scherrer Institut
Review of Application to SASE-FELs
Free Electron Lasers (FEL’s)
ERL working modes Georg Hoffstaetter, Professor Cornell University / CLASSE / SRF group & ERL effort High Current mode High Coherence mode High Buch charge.
Self-seeding for the soft x-ray line in LCLS upgrade
Challenges in Simulating EEHG
Z. Huang LCLS Lehman Review May 14, 2009
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Jim Clarke ASTeC Daresbury Laboratory March 2006
Longitudinal-to-transverse mapping and emittance transfer
Longitudinal-to-transverse mapping and emittance transfer
Gain Computation Sven Reiche, UCLA April 24, 2002
Introduction to Free Electron Lasers Zhirong Huang
Enhanced Self-Amplified Spontaneous Emission
Electron Optics & Bunch Compression
Presentation transcript:

Seeding of free electron lasers by various techniques A. Meseck

2 CLASSE-Seminar Nov A. Meseck ORS Collaborators: Stockholm University: Peter Salen, Mathias Hamberg, Mats Larsson Uppsala University: Volker Ziemann, Gergana Angelova-Hamberg DESY: Holger Schlarb, Florian Löhl, E. Saldin, E. Schneidmiller & M. Yurkov Hamburg University: Joern Boedewadt, Axel Winter, Shaukat Khan BESSY-FEL Design Team M. Abo-Bakr, W. Anders, J. Bahrdt, R. Bakker $, K. Bürkmann, G. Bartlock #, G. Bisoffi &, P. Budz, O. Dressler, H. Dürr, V. Dürr, W. Eberhardt, S Eisebitt, J. Feikes, R. Follath, A. Gaupp, A. Goldammer, M. v. Hartrott, Ch. Haberstroh #, I.V. Hertel*, S. Heßler, K. Holldack, E. Jaeschke, D. Janssen %, Th. Kamps, S. Khan, J. Knobloch, D. Krämer, B. Kuske, P. Kuske, A. Kutschbach #, F. Marhauser, A. Meseck, P. Michel %, G. Mishra §, R. Mitzner, R. Müller, M. Neeb, A. Neumann, F. Noack*, K. Ott, W. Peatman, D. Pflückhahn, H. Prange, H. Quack #, T. Quast, M. Scheer, M. Schnürer*, T. Schroeter, W. Sandner*, F. Senf, I. Will*, G. Wüstefeld, J. Teichert %, P. Tzankow*, Y. Xiang +.

3 CLASSE-Seminar Nov A. Meseck Synchrotron Radiation THz Photon energy (eV) Synchrotron radiation Wavelength (m)

4 CLASSE-Seminar Nov A. Meseck Synchrotron Radiation Sources Wiggler / Undulator Narrow beam Polarization Precisely calculable Pulsed beam High Intensity Wide spectral range Peak brillíance Year Free electron laser X-ray tubes Synchrotron radiation sources 1 st generation 2 nd generation 3 rd generation

5 CLASSE-Seminar Nov A. Meseck K  1 ;  w  1/  Brilliance ~ N 2 K  1 ;  w  1/  Brilliance ~ 2N u Wiggler and Undulator ww s Trajectory Oscillation frequency: Undulator parameter Res. Wavelength: Photonenergie keV Dipolmagnet Undulator Wiggler Brillanz Ph./(s mm 2 mrad 2 0.1%BW)

6 CLASSE-Seminar Nov A. Meseck FEL- Interaction Interchange between electron beam and radiation field: NSNS s s s s Vx Resonance condition for FEL:

7 CLASSE-Seminar Nov A. Meseck FEL- Equation of Motion Pendulum: - Frequency:  0 0   Separatrix  

8 CLASSE-Seminar Nov A. Meseck  0 0  Separatrix 0 0   Separatrix  Amplification ( Low Gain ) The amplification of radiation intensity depends on the electron density. For small electron densities the amplification per turn is small. For  > 0 a net intensity amplification is expected. 

9 CLASSE-Seminar Nov A. Meseck Madey -Theorem: The amplification (Gain) is proportional to the negative derivative of the “resonance- curve” of the spontaneous undulator spectrum. Low Gain 0 0   Separatrix 

10 CLASSE-Seminar Nov A. Meseck Low Gain FEL

11 CLASSE-Seminar Nov A. Meseck JLAB ERL-FEL

12 CLASSE-Seminar Nov A. Meseck Mirrors for FELs

13 CLASSE-Seminar Nov A. Meseck High Gain - SASE FEL Extremely high electron densities lead to a permanent amplification of the radiation intensity. The electrons are bundled into packages: Micro-bunching The electrons radiate coherently.

14 CLASSE-Seminar Nov A. Meseck Spectral Properties of the SASE -FELs The statistic behavior of the FEL radiation is caused by the statistic fluctuations in the density distribution of the electrons. Messung am TTF1 Power [GW] Spectrum [a.u.] Zeit [s] Intensität / mittlere Intensität

15 CLASSE-Seminar Nov A. Meseck HGHG SASE Power [GW] Spectrum [a.u.] Advantages of Seeding

16 CLASSE-Seminar Nov A. Meseck Short Laser Pulse (Ti:Sa) brilliant electron beam High Gain Harmonic Generation (HGHG)* Dispersive section   --  -n-n nn Modulator Radiator *Developed by L.-H. Yu et al.,BNL Phys. Rev. A44/8 (1991) 5178

17 CLASSE-Seminar Nov A. Meseck Cascaded HGHG-FEL Laser s Final Amplifier r1 = s /n 1 r2 = s /n 1 /n 2 f = r2 1.Stage 2.Stage

18 CLASSE-Seminar Nov A. Meseck Down-conversion of the seeding wavelength to the desired wavelength. With fresh bunch technique - Classical HGHG a) with final amplifier b) with an extended last radiator Without fresh bunch technique - Modulator cascade - Radiator cascade - Combination of modulator and radiator cascade - Superradiant cascade Cascading towards  < 1nm

19 CLASSE-Seminar Nov A. Meseck Imprinted energy modulation Energy modulation Output power Total energy spread in radiator Linking Bunch, Seed and Undulator Parameters Dispersion chicane modulator and radiator

20 CLASSE-Seminar Nov A. Meseck Linking Bunch, Seed and Undulator Parameters u = 2.5 cm K = 1 E = 2.3 GeV I = 2000 A

21 CLASSE-Seminar Nov A. Meseck The seeded bunch part is no longer suitable for a further seeding process. Use a long bunch and shift interaction region for each stage Fresh Bunch Technique 2 nd Stage Final Amplifier 1 st Stage Electron bunch seed

22 CLASSE-Seminar Nov A. Meseck Signal to Noise Ratio and Seed Power Ensure that the phase correlation and pulse length are conserved! the shot-noise effects are suppressed! * E. Saldin et a., Opt. Comm. 202 (2002) 169 * Limits the total harmonic number High seed power required

23 CLASSE-Seminar Nov A. Meseck Classical High-Gain Harmonic-Generation Cascade using Fresh Bunch Technique and Final Amplifier ELECTRON BEAM Beam energy GeV Peak current 1.8 kA Bunch charge 2.5 nC Emittance (slice) 1.5  mm mrad Repetition rate 1 kHz (later 25) SEEDING RADIATION Photon energy 2.7–5.4 eV Peak power 500 MW Pulse duration < 20 fs Modulator 1 Radiator 1 Laser e- beam Chicane Radiator 2 Chicane FB-Chicane Modulator 2 Final Amplifier FB-Chicane Bessy FEL : LE-Line

24 CLASSE-Seminar Nov A. Meseck Classical High-Gain Harmonic-Generation Cascade using Fresh Bunch Technique ELECTRON BEAM Beam energy: GeV Peak current: 0.5 kA Emittance (slice) :1.5  mm mrad SEEDING RADIATION Photon energy: 1.4 eV? Peak power: 275 MW Pulse duration: < 20 fs Modulator 1 Radiator 1 Laser e- beam Chicane Radiator 2 Chicane FB-Chicane Modulator 2 STARS Radiator 2

25 CLASSE-Seminar Nov A. Meseck Modulator Cascade The bunching achievable at the beginning of the radiator (black) depends on the initial energy spread. The power emitted after one radiator module (red) shows the same dependency. Very small initial energy spread necessary Modulator 1 Laser Electron beam Chicane Radiator 1 Modulator 2 Chicane

26 CLASSE-Seminar Nov A. Meseck Split Modulators Cascade Laser Electron beam Modulator 1Radiator 2 Chicane Modulator 1 Due to the slippage, the reduction of the effective energy spread is much lower for the short pulse (red) than for the CW pulse (black).

27 CLASSE-Seminar Nov A. Meseck Split Modulators Cascade The output power of a split modulator cascade compared with a corresponding regular two stage HGHG cascade. Laser Electron beam Modulator 1Radiator 2 Chicane Modulator 1 Despite reduction too high energy spread Benefits from longer seed pulses

28 CLASSE-Seminar Nov A. Meseck Modulator Cascade – ECHO Scheme Modulator 1 Laser1 Electron beam Chicane Radiator 1 Modulator 2 Chicane Laser2 Modulator 1 + Chicane 1 Modulator 2 + Chicane 2 G. Stupakov FEL 2009

29 CLASSE-Seminar Nov A. Meseck Modulator Cascade – ECHO Scheme Modulator 1 Laser1 Electron beam Chicane Radiator 1 Modulator 2 Chicane Laser2 Modulator 1 + Chicane 1 Modulator 2 + Chicane 2 G. Stupakov FEL 2009

30 CLASSE-Seminar Nov A. Meseck Radiator Cascade Suffers from built up of effective energy spread in first radiator Modulator 1 Laser Electron beam Radiator 1 Radiator 2 Chicane

31 CLASSE-Seminar Nov A. Meseck Modulator and Radiator Cascade * Modulator Cascade: very small initial energy spread necessary Radiator cascade: suffers from built up of effective energy spread in first radiator Combination: combination of problems of modulator and radiator cascade is fatal at least in low energy case Modulator 1 Laser Electron beam Radiator 1 Radiator 2 Chicane Modulator 2 Chicane * DEVELOPMENTS IN CASCADED HGHG-FELs ∗ B. Kuske, A. Meseck, The output of the last radiator of the BESSY LE- FEL(black), the corresponding radiator (blue) and modulator (red) cascades. The low initial energy spread necessary for the modulator cascade causes the lower noise level.

32 CLASSE-Seminar Nov A. Meseck Laser Electron beam Modulator 1Radiator 1Radiator 2 Chicane Superradiant Radiator Cascade Strong (short) seed field Saturation in bunching in first modulator Super radiant pulses in long radiators : inherent fresh bunch Frequency conversion with dispersive chicanes possible but not necessary Super radiance endures frequency conversion Giannessi FEL2005

33 CLASSE-Seminar Nov A. Meseck Laser Electron beam Modulator 1Radiator 1Radiator 2 Chicane Superradiant Radiator Cascade Strong (short) seed field Saturation in bunching in first modulator Super radiant pulses in long radiators : inherent fresh bunch Frequency conversion with dispersive chicanes possible but not necessary Super radiance endures frequency conversion

34 CLASSE-Seminar Nov A. Meseck Superradiant Radiator Cascade The radiation output of the HGHG cascade (black) and the super radiant cascade (red) are depicted. As expected, the spectral quality (left) degrades for the very short super radiant pulse. Very short pulses Poor spectral purity Lower peak power due to disadvantageous ratio between Bunching and effective energy spread Laser Electron beam Modulator 1Radiator 1Radiator 2 Chicane

35 CLASSE-Seminar Nov A. Meseck The ratio between superradiance parameter S = s N w / l b and the slippage parameter k = l c /l b (bonifaccio-definitions) is the key-parameter. If the slippage is too small (=> short wavelength), there is no benefit from the superradiant pulse for harmonic generation. Limit of Superradiant cascades

36 CLASSE-Seminar Nov A. Meseck With fresh bunch technique - Classical HGHG a) with final amplifier b) with an extended last radiator Without fresh bunch technique - Modulator cascade - Radiator cascade - Combination of modulator and radiator cascade - Superradiant cascade Cascading towards  < 1nm noise-amplification => HHG seeds ? Increased energy spread too small slippage (=> short wavelength) DEVELOPMENTS IN CASCADED HGHG-FELs ∗ B. Kuske, A. Meseck,

37 CLASSE-Seminar Nov A. Meseck 40nm 800MeV MeV R 1 Laser Electron beam s=40nm FB-Chicane R 2 s=40nm s=20nm s=10nm R 1 HHG-seed 40nm In RAD1 Ende RAD1 RAD2-helisch 40nm RAD2-helisch 20nm RAD2-helisch 10nm Extension: Classical HHG Seeding

38 CLASSE-Seminar Nov A. Meseck 40nm 800MeV MeV R 1 Laser Electron beam s=40nm FB-Chicane M 2 s=40nm s=8nm R 1 R 2 Chicane R 2 HHG-seed 40nm In RAD1 Ende RAD1 MOD2-helisch 40nm Extension of Classical HHG Seeding II

39 CLASSE-Seminar Nov A. Meseck calibration and OTR screens on 7Match and 3SUND1 ORS Experiment at FLASH* OTR screens on 2SUND2 * PRSTAB 11, , 2008

40 CLASSE-Seminar Nov A. Meseck ORS Experiment at FLASH* * PRSTAB 11, , 2008

41 CLASSE-Seminar Nov A. Meseck FROG Trace, ORS Experiment

42 CLASSE-Seminar Nov A. Meseck ERL driven Seeded FELs?

43 CLASSE-Seminar Nov A. Meseck Cornell-ERL Mode A : X-ray

44 CLASSE-Seminar Nov A. Meseck Cornell-ERL Mode A: Soft X-ray

45 CLASSE-Seminar Nov A. Meseck Mode A: Soft X-ray ; Higher Current Bunch Compression Mode A Goal

46 CLASSE-Seminar Nov A. Meseck Cornell-ERL Mode C: Soft X-ray

47 CLASSE-Seminar Nov A. Meseck Cornell-ERL Mode D: Soft X-ray Space charge dominated beam

48 CLASSE-Seminar Nov A. Meseck Seeding Example Mode D- Seed power Imprinted Energy Modulation HHG-Seed?

49 CLASSE-Seminar Nov A. Meseck Mode D- Seed power and Bunching (funda.) Seed energy (50fs): 500nJ -10  J

50 CLASSE-Seminar Nov A. Meseck Mode D- Energy spread and Bunching (funda.) Seed energy (50fs): 250nJ

51 CLASSE-Seminar Nov A. Meseck Coherent Emission P coh  b 2 x I 2   2 x K 2  -2 Determined by the desired wavelength range,  L. Bunching depends mainly on energy deviation. As high as possible, but take the space charge into account! Bunching at the entrance of the radiator of the second stage of STARS with and without space charge force.

52 CLASSE-Seminar Nov A. Meseck Summary Seeded FELs provide reproducible, stable radiation (in terms of wavelength and Intensity) better control on pulse shape and pulse duration transverse and longitudinal coherence Short wavelength seeds (HHG) with high Intensities are still not state-of-the-art => Several cascading scheme, e.g. HGHG, modulator and/or radiator cascades, are proposed or already under construction Seeding can also be used for beam diagnostics, ORS A seeded FEL can also be driven by an ERL