50 W Laser Concepts for Initial LIGO Lutz Winkelmann, Maik Frede, Ralf Wilhelm, Dietmar Kracht Laser Zentrum Hannover LSC March 05 Livingston G050161-00-Z.

Slides:



Advertisements
Similar presentations
Thermal properties of laser crystal Rui Zhang ACCL Division V, RF-Gun Group Feb 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Advertisements

Status of High-Power Laser Development at Stanford Shally Saraf*, Supriyo Sinha, Arun Kumar Sridharan and Robert L. Byer E. L. Ginzton Laboratory, Stanford.
Enhanced LIGO Laser System S. Wagner, B. Schulz, R. Wachter, C. Veltkamp, M. Janssen, P. Weßels, M. Frede, D. Kracht.
Present status of the laser system for KAGRA Univ. of Tokyo Mio Lab. Photon Science Center SUZUKI, Ken-ichiro.
Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
CNMFrascati 12/01/061 High Power Laser System for Advanced Virgo C.N.Man Design goals Present technology Other activities in the world Virgo+ and Laser.
Simulation of a Passively Modelocked All-Fiber Laser with Nonlinear Optical Loop Mirror Joseph Shoer ‘06 Strait Lab.
Characteristic evaluation of new laser crystals Rui Zhang ACCL Division V, RF-Gun Group Feb 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
LSRL 06 Nov, 2003, IAEA CRP Meeting in Vienna Feasibility study on Scalable Self-Phase Locking of two beam combination using stimulated Brillouin scattering.
Self-Mode-Locking Investigation of High-Power Optically Pumped Semiconductor Laser Advisor: Yung Fu Chen Student: Yi Chun Lee Date: 2010/07/09 Solid-State.
Power Stabilization of the 35W Reference System Frank Seifert, Patrick Kwee, Benno Willke, Karsten Danzmann Max-Planck-Institute for Gravitational Physics.
LSU Amplifier Experiments Rupal S. Amin (LSU) J. Giaime (LSU), D. Hosken (Uni. Adelaide), D. Ottaway (MIT) LSC/VIRGO Meeting March 2007 Lasers Working.
Formatvorlage des Untertitelmasters durch Klicken bearbeiten 1/26/15 1 kHz, multi-mJ Yb:KYW bulk regenerative amplifier 1 Ultrafast Optics and X-Ray Division,
October 16-18, 2012Working Group on Space-based Lidar Winds 1 AEOLUS STATUS Part 1: Design Overview.
Picosecond fiber laser for thin film micro-processing
Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.
Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
Double-Clad Erbium-Ytterbium Co-Doped Fiber Laser Colin Diehl & Connor Pogue.
GJ Van der Westhuizen, JP Burger, EG Rohwer, JN Maran Laser Research Institute, Department of Physics, University of Stellenbosch, South Africa NUMERICAL.
B. Willke, Mar 01 LIGO-G Z Laser Developement for Advanced LIGO Benno Willke LSC meeting LIGO-Livingston Site, Mar 2001.
Current status of Laser development 2nd Korea - Japan Workshop on KAGRA 2012/5/28(Mon)
Folienvorlagen für Seminarvortrag. Novel laser concepts HR-mirror out coupling mirror disc cooling diode laser focusing optic diode laser focusing optic.
Advanced LIGO laser development P. Weßels, L. Winkelmann, O. Puncken, B. Schulz, S. Wagner, M. Hildebrandt, C. Veltkamp, M. Janssen, R. Kluzik, M. Frede,
©LZH M.Frede Aug.02 G Z Status of Laser Zentrum Hannover Laser Program Maik Frede Martina Brendel, Carsten Fallnich, Renê Gau, Philipp Huke, Ralf.
Recent Results from Dragonfire Armor Simulation Experiments Farrokh Najmabadi, Lane Carlson, John Pulsifer UC San Diego HAPL Meeting, Naval Research Laboratory.
©LZH Livingston, La.; LIGO-G Status of 100 W Rod System at LZH Laserzentrum Hannover e. V. Hollerithallee 8 D Hannover Germany.
Stanford High Power Laser Lab Status of high power laser development for LIGO at Stanford Shally Saraf*, Supriyo Sinha, Arun Kumar Sridharan and Robert.
LIGO-G D LIGO R&D1 Advanced LIGO R&D Review The PSL Peter King & Rich Abbott October 8, 2002.
Optimized temperature/bandwidth operation of cryogenic Yb:YAG composite thin-disk laser amplifier 1 Ultrafast Optics and X-Ray Division, Center for Free-Electron.
Development of High-efficiency Yb:YAG Regenerative Amplifier for Industry Isao Matsushima 1, Kazuyuki Akagawa² 1. National Institute of Advanced Industrial.
CryoYb:YAG-1 DJR 12/6/2015 MIT Lincoln Laboratory Cryogenically cooled solid-state lasers: Recent developments and future prospects * T. Y. Fan, D. J.
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
©LZH ZA GEO 600 Laser System as in the optics lab of Callinstraße 38 at LIGO-G D.
Development of high-power and stable laser for gravitational wave detection Mio Laboratory Kohei Takeno.
Status of the Advanced LIGO PSL development LSC meeting, Baton Rouge March 2007 G Z Benno Willke for the PSL team.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
LIGO-G09xxxxx-v1 Form F v1 Development of a Low Noise External Cavity Diode Laser in the Littrow Configuration Chloe Ling LIGO SURF 2013 Mentors:
Laser System Upgrade Overview
AdvLIGO Laser Status Lutz Winkelmann, Maik Frede, Oliver Puncken, Bastian Schulz Ralf Wilhelm, and Dietmar Kracht Laser Zentrum Hannover Frank Seifert,
Erbium Microchip Laser Development 1.Erbium:Yb:Glass and Er:Yb:LiNbO3 Status. 2.Problems with 980 nm Laser Pump. 3.Development Plans.
Workshop for advanced THz and Compton X-ray generation
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
Positioning Sensor for Electric Motor Drive ENGR 498 Senior Design College of Optical Sciences Industrial Affiliates.
ALIGO 0.45 Gpc 2014 iLIGO 35 Mpc 2007 Future Range to Neutron Star Coalescence Better Seismic Isolation Increased Laser Power and Signal Recycling Reduced.
Optical Engines 842 S Sierra Madre St STE D Colorado Springs CO, (815) Fiber Laser Amplifier Technology.
G Z 1 eLIGO/advLIGO FI update Antonio Lucianetti, K.L. Dooley, R. Martin, L. F. Williams, M.A. Arain, V. Quetschke, G. Mueller, D.B. Tanner, and.
1 Advanced Faraday isolator designs for high average powers. Efim Khazanov, Anatoly Poteomkin, Nikolay Andreev, Oleg Palashov, Alexander Sergeev Institute.
Laser Adaptive Optics for Advanced LIGO
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY Violin-Mode Detector N.A. Lockerbie and K.V. Tokmakov Hannover 27 January, 2010.
DECam Spectrophotometric Calibration DECam calibration workshop, TAMU April 20 th, 2009 Jean-Philippe Rheault, Texas A&M University.
LASER SYSTEM STATUS G.Gatti, A. Ghigo, C.Vicario, P.Musumeci, M. Petrarca, S. Cialdi, D. Filippetto REVIEW COMMITTEE 16/11/05.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Advisor: Sheng-Lung Huang Speaker: Sheng-Feng Chen 1.
Single-frequency fiber amplifier development for next- generation GWDs
NSF Annual Review of the LIGO Laboratory
Current Situation of Yb:YAG Laser at A1 Ground Laser Hut
GW related research activities in Hannover UNI/AEI
Nd:YAG Solid Laser 3-2 / A-1 on the ground
Lasers for Advanced Interferometers
Present status of the laser system for KAGRA
Synthetic Sapphire Absorbance at 1064 nm
LASER SYSTEM STATUS G.Gatti , A. Ghigo , C.Vicario , P.Musumeci ,
2 µm High Power Fiber Isolator (patents pending)
2 µm High Power Fiber Isolator (50W CW) (patents pending)
Fiber End Cap (for high power applications)
Performance Specifications
Performance Specifications
Presentation transcript:

50 W Laser Concepts for Initial LIGO Lutz Winkelmann, Maik Frede, Ralf Wilhelm, Dietmar Kracht Laser Zentrum Hannover LSC March 05 Livingston G Z

Overview: Two concepts for a 50W laser for initial LIGO –Conceptional design –Experimental Setup –Presentation of computational and measured data Comparison of both concepts Summary

High-Power Nd:YAG Multi-Pass Amplifier First Concept

High-Power Nd:YAG Multi-Pass Amplifier First Concept - water-cooled rod mount - 40 mm Nd:YAG 0.1at.% doped crystal with 7 mm undoped end caps on both sides laser-head with: - 10x400 µm fibers each 30 W - pump light homogenizer - pump light optics

Single-Pass Output Power Calculated Data max. estimated output power 26.5W

Single-Pass Output Power Experimental Data max. measured output power 26.1W

Single-Pass Gain Calculated Data max. estimated small signal gain of 300W pump power

Experimental Data Single-Pass Gain max. measured small signal gain of 300W pump power

Double-Pass Output Power Calculated Data max. estimated output power 300W pump power

Experimental Data Double-Pass Output Power max. measured output power 315W pump power

Double-Pass Gain Calculated Data max. estimated small signal gain of 300W pump power

Double-Pass Gain Experimental Data max. measured small signal gain of 300W pump power

Second Concept Nd:YVO 4 4 Rod Amplifier

Experimental Setup Nd:YVO 4 Laser Amplifier

Experimental Setup - passively cooled crystal mount - 8 mm Nd:YVO 4 rod with 2 mm undoped end cap - first experimental setup for single-pass measurements

Single-Pass Output Power Calculated Data max. estimated output power 10W seed power

Single-Pass Output Power Experimental Data max. measured output power 10W seed power

Single-Pass Gain Calculated Data max. estimated small signal gain of 30.5W pump power

Single-Pass Gain Experimental Data max. measured small signal gain of 30.5W pump power

Simulation of a 4 Rod Amplifier Amplifier with multiple single-pass rod cascade P in = 10W estimated output power 125W pump power

Comparison of Both Concepts Single-pass output power at 10W seed power: 26.1W17.9W Single-pass opt.-opt. efficiency: 8.3% in single-pass operation at 315W pump power 26% in single-pass operation at 30.5W pump power Estimated efficiency of 40% for 4 rod cascade Depolarization compensation: thermal birefringence => compensation required natural birefringence => no compensation necessary Mechanical design:water-cooled rod mountpassively cooled rod mount Nd:YAG Amplifier Nd:YVO 4 Amplifier

Summary Both concepts seems to be suitable for the 50W initial LIGO laser More experimental measurements and simulations have to be performed to make a final decision

Beam Profile Measurements Seed source Full pumped amplifier