Update of the DeeMe spectrometer design and its performance Nguyen Duy Thong, Masaharu Aoki, Doug Bryman C, Satoshi Mihara A, Yohei Nakatsugawa A, Hiroaki.

Slides:



Advertisements
Similar presentations
Ozgur Ates Hampton University HUGS 2009-JLAB TREK Experiment “Tracking and Baseline Design”
Advertisements

Advanced GAmma Tracking Array
Investigations of Semileptonic Kaon Decays at the NA48 Еxperiment Milena Dyulendarova (University of Sofia “St. Kliment Ohridski”) for NA48 Collaboration.
HEP Experiments Detectors and their Technologies Sascha Marc Schmeling CERN.
1 Search for the Flavor-Changing Neutral-Current Decay,   → p     HyangKyu Park University of Michigan, Ann Arbor for the HyperCP collaboration.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
Pion yield studies for proton drive beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments Sergei Striganov Fermilab Workshop.
Pion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI.
The COherent Muon to Electron Transition (COMET) Experiment
Bogdan Wojtsekhowski, Jefferson Lab Experimental search for A’ for APEX collaboration 1.
A. Kurup, I. Puri, Y. Uchida, Y. Yap, Imperial College London, UK R. B. Appleby, S. Tygier, The University of Manchester and the Cockcroft Institute, UK.
A. Kurup, I. Puri, Y. Uchida, Y. Yap, Imperial College London, UK R. B. Appleby, S. Tygier, The University of Manchester and the Cockcroft Institute, UK.
HPS Test Run Setup Takashi Maruyama SLAC Heavy Photon Search Collaboration Meeting Thomas Jefferson National Accelerator Facility, May 26-27,
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
HLab meeting 10/14/08 K. Shirotori. Contents SksMinus status –SKS magnet trouble –Magnetic field study.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
SHMS Optics and Background Studies Tanja Horn Hall C Summer Meeting 5 August 2008.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012.
2 pages of DeeMe. Forbidden in the Standard Model Discovery will be a significant result: Evidence of the new physics beyond the SM Answer to the light.
M. Aoki Translation of slides in 2010 JPS meeting (Okayama) By K. Shimomura and M. Aoki M. Aoki A , T. Ebihara A , N. Kawamura , Y. Kuno A , P. Strasser.
 N-eN Rare Process M. Aoki, Osaka University MuSAC-2009, Tokai, 2010/3/10-11.
Muon Beams for Particle Physics Ajit Kurup Winter Seminar March 2010.
RAL Muon Beam Line Properties. ISIS 70 MeV H- injection Ring accelerates up to 800 MeV in about 10 ms 50 Hz cycle - Dual Harmonic System ~ 2 x 1.5 MHz;
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
Μ→e search using pulsed muon beam μ -  e - νν nuclear muon capture Muon Decay In Orbit  π - +(A,Z)→(A,Z-1)*, (A,Z-1)* →γ+(A,Z-1), γ→e + e - Prompt.
G-2, EDM, COMET muon particle physics programmes at J-PARC Mu_01 Satoshi MIHARA IPNS, KEK FKPPL-FJPPL workshop, Yonesei Univ.
Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,
COMET and DeeMe. Mu-e conversion search at J-PARC COMET Target sensitivity 10 C.L. using aluminum target – SINDRUM II 7x – MEG 2.4x
COMET. μ-e conversion search from muonic aluminium J-PARC pulsed proton beam to produce pulsed muon beam Forbidden in the Standard Model  clue to the.
The LHCb Muon System and LAPE Participation Burkhard Schmidt CERN - EP/LHB Presented at the CNPq Workshop Rio de Janeiro, 12 January 1999.
Muon detection in NA60  Experiment setup and operation principle  Coping with background R.Shahoyan, IST (Lisbon)
Mu2e and Project X, September 3, 2008 E Prebys Background: Proton Economics in Project X Era* Assume  9mA*1ms = 5.3x10 13 protons/linac “blast”  Main.
Giovanni Onorato Fermilab University of Rome “Guglielmo Marconi” INFN Lecce Mu2e general presentation.
Active polarimeter simulation Suguru Shimizu Osaka University Sep. 1, 2007 JPARC TREK Collaboration meeting at Saskatchewan.
Physics with the COMET Staging Plan Satoshi MIHARA IPNS, KEK.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
D 0 reconstruction: 15 AGeV – 25 AGeV – 35 AGeV M.Deveaux, C.Dritsa, F.Rami IPHC Strasbourg / GSI Darmstadt Outline Motivation Simulation Tools Results.
 A model of beam line built with G4Beamline (scripting tool for GEANT4)  Simulated performance downstream of the AC Dipole for core of beam using  x.
COMET μ-e conversion search at J-PARC. μ-e conversion physics SUSY-GUT, SUSY-seesaw (Gauge Mediated process) – BR = = BR(μ→eγ) × O(α) – τ→lγ SUSY-seesaw.
Status of E14 G.Y.Lim IPNS, KEK. E14 Experiment Step-by-step approach to precise measurement of Br( K L    ) KEK-PS E391a J-PARC E14 (Step-1) J-PARC.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
The physics of Mu2e Bertrand Echenard California Institute of Technology Mu2e computing review doc-db XXXXX.
The Mu2e Experiment at Fermilab Jim Miller Boston University for the Mu2e Collaboration.
Muon Rare Decay at PRISM Masaharu Aoki Osaka University KEKNP01 December 10-12, 2001, KEK.
The Mu2e experiment at Fermilab Finding a needle in a trillion haystacks Bertrand Echenard California Institute of Technology APS Meeting – April 2013.
E.C. AschenauerEIC INT Program, Seattle Week 81.
Quarkonia production with the HERA-B experiment J. Spengler, MPI Heidelberg.
Open and Hidden Beauty Production in 920 GeV p-N interactions Presented by Mauro Villa for the Hera-B collaboration 2002/3 data taking:
Mitglied der Helmholtz-Gemeinschaft Hit Reconstruction for the Luminosity Monitor March 3 rd 2009 | T. Randriamalala, J. Ritman and T. Stockmanns.
New cLFV search experiments using the mu-e conversion process Satoshi MIHARA KEK, Japan.
Timelike Compton Scattering at JLab
Design and performance of the ALICE Muon Spectrometer
Search for CLFV at COMET experiment muon to electron conversion
Tracking(1) Kp2 decay-in-flight BG simulation
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
The COMET Experiment Ajit Kurup, Imperial College London, on behalf of the COMET Collaboration. ABSTRACT The COherent Muon to Electron Transition (COMET)
MAGIX Detectors Overview
Update on GEp GEM Background Rates
Prospects for CLFV experiments
¹ N ! e N Physics Backgrounds
LHCb Particle Identification and Performance
COherent Muon to Electron Transition (COMET)
What is the CNI experiment
Gain measurements of Chromium GEM foils
Presentation transcript:

Update of the DeeMe spectrometer design and its performance Nguyen Duy Thong, Masaharu Aoki, Doug Bryman C, Satoshi Mihara A, Yohei Nakatsugawa A, Hiroaki Natori A, Nguyen Minh Truong, Hajime Nishiguchi A, Toshi Numao D, Yoshihiro Seiya B, Kousuke Shimizu B, Kazuhiro Yamamoto B and DeeMe Collaboration Osaka University, KEK A, Osaka City University B, UBC C, TRIUMF D Outline: Introduction DeeMe Project Spectrometer Update Summary

Introduction  Nucleus Muon decay-in-orbit Muon capture    + (A,Z)   + (A, Z-1) MC:DIO = 1:1000 (H), 2:1(Si), 13:1(Cu)  (free  - ) = 2.2  s  (  - in Si) = 0.76  s  -e conversion  - +(A,Z)  e - + (A,Z) Charged Lepton Flavor Violation Forbidden in the Standard Model  -e conversion  - +(A,Z)  e - + (A,Z) Charged Lepton Flavor Violation Forbidden in the Standard Model Theoretical estimation for  -e conversion: SUSY-GUT,SUSY-seesaw, Doubly Charged Higgs Boson.. BR: ~ Recent Upper Limit: SINDRUM-II: BR[  - +Au  e - +Au] < 7x SINDRUM-II: BR[  - +Ti  e - +Ti] < 4.3x TRIUMF: BR[  - +Ti  e - +Ti] < 4.6x Muonic atom in nuclear field

DeeMe project Search for  -e conversion BR: Place: MLF, J-PARC Data taking : from 2015 Search for  -e conversion BR: Place: MLF, J-PARC Data taking : from Signature :  - +(A,Z)  e - +(A,Z) Single mono-energetic electron: ~105MeV Delayed :~1  s Main Physics background: DIO Signature :  - +(A,Z)  e - +(A,Z) Single mono-energetic electron: ~105MeV Delayed :~1  s Main Physics background: DIO DIO BG  -e signal Spectrometer: Bending magnet Multi-Wire Proportional Chambers (MWPC) DeeMe status Stage 2 for construction & physics run: approved HV-switch MWPC: ongoing (28pTH-6). Target: start with Graphite & SiC: R&D ongoing (27aSD-2)

Spectrometer Update To reduce construction cost, PACMAN Magnet existing in TRIUMF will be used PACMAN Magnet PACMAN : Type: rectangular dipole magnet Size = 300x930x760(mm 3 ) Max field = 1 T Sector Magnet

Purpose of this study Purpose of this study: PACMAN can be used or not? Why? Defocusing issue of PACMAN is stronger than Sector Magnet Requirement : Momentum resolution: dP<0.5MeV/c Parameters : a. Bending angle b. Spatial resolution c. Material Thickness d. Size of WC3,4: distributed-source Sector Magnet PACMAN Magnet Mono-energetic 105MeV/c

a. Bending angle Result: consistent with theoretical estimation. dP<0.5MeV/c: bending angle greater than 50-degree for  h =0.3 mm Where d : distance between 2 wires In MWPC 0.5 MeV/c

b. Spatial resolution dP<0.5MeV/c: for 70-degree,  h ≤ 0.7mm Current design  h : 0.3mm. Material thickness: 0.12%X 0 Dominated by multiple scattering 0.5MeV/c (X 0 : radiation length)

dP<0.5 MeV/c: for 70-degree, thickness < 0.20 %X 0 Final MWPC: material thickness ~ 0.12 % X 0 c. Material thickness: contribute to multiple scattering (X 0 : radiation length)

d. Optimization of WC3,4 size Adjust the size of WC3,4: - Obtain a high acceptance - Maximize an accepted energy range Distributed source WC 3 Acceptance exit of Hline DIO BG  -e signal AP background

70-degree Momentum-Acceptance curve The range of accepted momentums : 90 ~ 120 MeV/c The highest acceptance can be obtained if width ≥ 600mm

Summary DeeMe experiment: search for  -e S.E.S Stage 2 : Approved by KEK/IMSS PAC It is being constructed at MLF, J-PARC. Data taking : from 2015 PACMAN magnet can be replaced for Sector Magnet: No difficulty to obtain dP<0.5MeV/c Roughly estimated parameters: Bending angle ≥ 50-degree for  h =0.300 mm Spatial resolution ≤ 0.8 mm for 70-degree Material thickness ≤ 0.25% for 70-degree WC3,4 width ≥ 600 mm For a real design, further optimization is ongoing with full MC.

Thank you for your attention

Backup dP<0.5 MeV/c Bending angle should be greater than 50 deg Spatial resolution : 0.3mm≤RES≤0.8mm Wire chamber thickness: less than 0.5mm High acceptance : WC3,4 width ≥600mm A trial with realistic Momentum Spectrum Spectrometer configuration: 70-deg bending angle RES=0.3mm Wire chamber thickness = 0.244mm WC3,4 width= 800mm Reconstruction: Kalman-filter with GENFIT library

Observation: dP is inversely proportional to bending angle  consistent with theoretical estimation dP<0.5MeV: bending angle should be greater than 50deg dP : tend to become statured if bending angle >=60deg Conclusion: Bending angle could be greater than 60-deg. Theoretical Estimation : momentum resolution is inversely proportional to bending angle

Theoretical estimation: Momentum resolution is linearly proportional to spatial resolution Observation : dP: not clearly linearly proportional to spatial resolution due to affect of Multiple scattering dP<0.5 MeV/c: RES<0.8mm Current prototype of MWPC: RES=0.3mm We want to increase value of RES in order to reduce number of wires. Conclusion: 0.3mm≤RES≤0.8mm.

DeeMe spectrometer Prompt burst : proton beam creates secondary beam tracker Hodoscope DIO BG  -e signal DIO BG: Magnet spectrometer for suppressing high energy tail Requirements: p=105MeV/c  p<0.5MeV/c (RMS) Material thickness <0.1%X 0 Prompt burst 33k particles /pulse 600ns 300ns Signal window Not in scale 16

PACMAN magnet from TRIUMF

60deg Momentum – Acceptance curve The range of accepted momentum : 90 ~ 120 MeV/c Highest acceptance around 105 MeV/c when width is greater than 500mm

80-deg Momentum-Acceptance curve The range of accepted momentum : 90 ~ 120 MeV/c Highest acceptance around 105 MeV/c when width is greater than 600mm

Sector Magnet Beam exit of Hline

Material Thickness Contribute to Multiple scattering Convert to thickness of kapton Anode frame Potential frame Cathode frame Metal frame Space frame Structure of prototype MWPC