Anisotropic dielectronic resonances from magnetic-dipole lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS.

Slides:



Advertisements
Similar presentations
Line Features in RHESSI Spectra Kenneth J. H. Phillips Brian R. Dennis GSFC RHESSI Workshop Taos, NM 10 – 11 September 2003.
Advertisements

1/15/2015 Report YY EUV Spectroscopy of Tungsten Observed in SH-Htsc EBIT and related Calculations Yang Yang Shanghai EBIT Laboratory Institute of Modern.
Data Quality and Needs for Collisional-Radiative Modeling Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA Joint ITAMP-IAEA.
Collisional-Radiative Modeling of EBIT Spectra of High-Z Ions Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD ADAS.
Penning-Trap Mass Spectrometry for Neutrino Physics
Fitting X-ray Spectra with Imperfect Models Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Acknowledgments to Randall Smith and Adam Foster.
Kazimierz What is the best way to synthesize the element Z=120 ? K. Siwek-Wilczyńska, J. Wilczyński, T. Cap.
Runaway Electron Mitigation Collaboration on J-TEXT David Q. Hwang UC Davis Sixth US-PRC Magnetic Fusion Collaboration Workshop Collaborating Institutions:
55. Jahrestagung der ÖPG, September 2005 Pionischer Wasserstoff: Präzisionsmessungen zur starken Wechselwirkung J. Marton Stefan Meyer Institut der ÖAW.
Ionization and Recombination with Electrons: Laboratory Measurements and Observational Consequences Daniel Wolf Savin Columbia Astrophysics Laboratory.
6/17/20141 Absolute nuclear charge radii for elements without stable isotopes via precision x-ray spectroscopy of lithium-like ions Andrew Senchuk, Gerald.
John J. Curry Atomic Spectroscopy Group National Institute of Standards and Technology physics.nist.gov/Divisions/Div842/Gp1/index.html.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
K-Shell Spectroscopy of Au Plasma Generated with a Short Pulse Laser Calvin Zulick [1], Franklin Dollar [1], Hui Chen [2], Katerina Falk [3], Andy Hazi.
Iron K Spectra from L-Shell Ions in Photoionized Plasmas Work in Progress Duane Liedahl Physics and Advanced Technologies Lawrence Livermore National Laboratory.
U N C L A S S I F I E D An overview of the Los Alamos suite of atomic physics codes H.L.Zhang, C.J.Fontes, J.Abdallah Jr.,J.Colgan, D.P.Kilcrease, N.H.Magee,M.Sherrill.
Superhot DEM (or DF?) RHESSI continuum with TRACE or EIT FeXXIV, SUMER FeXXI, GOES, or whatever.
High-resolution X-Ray diagnostic upgrade for ITER-like wall experiments at JET Amy Shumack ADAS workshop 29/9/14.
EBIT – Electron Beam Ion Trap
Jacek Rzadkiewicz ADAS workshop Warsaw, Presented by Jacek Rzadkiewicz Spectral characteristics and spectra simulations for high-resolution.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Copyright 2011 CreativeChemistryLessons.comCreativeChemistryLessons.comRemember! Metals LOSE Electrons (CATIONS)Metals LOSE Electrons (CATIONS) Non-Metals.
O. Marchuk 1, Yu. Ralchenko 2, D.R. Schultz 3, W. Biel 1, T. Schlummer 1 and E. Stambulchik Institute of Energy and Climate Research, Forschungszentrum.
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
- 1 - Radiation process of carbon ions in JT-60U detached divertor plasmas O-26(15+3min.) 29May2008 Spain Japan Atomic Energy Agency T. Nakano,
Pressure diagnostic for the trap center of Electron beam ion trap by EUV spectroscopy Guiyun Liang 梁贵云 National Astronomical Observatories, CAS Beijing,
CH. 2 atomic models electronic configuration oxidation numbers
A new theoretical insight into the spectroscopic properties of polonium and astatine atoms Pascal Quinet Spectroscopie Atomique et Physique des Atomes.
Measuring DR cross sections Absolute recombination rate coefficients of tungsten ions from storage-ring experiments Stefan.
Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
Periodic Table Of Elements
The Influence of the Return Current and Electron Beam on the EUV and X-Ray Flare Emission E. Dzifčáková, M. Karlický Astronomical Institute of the Academy.
Diagnostics of non-thermal n-distribution Kulinová, A. AÚ AVČR, Ondřejov, ČR FMFI UK, Bratislava, SR.
T. Nakano Japan Atomic Energy Agency W transport studies in JT-60U 3Sep2013 ADAS Workshop Badhonnef, GE.
Ion Heating and Cooling in an EBIT or EBIS Ross Marrs Lawrence Livermore National Laboratory LLNL-PRES HIE-EBIS Workshop CERN October 2012.
Photoelectron Spectroscopy
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
Introduction to Mineralogy Dr. Tark Hamilton Chapter 3: Lecture 7 The Chemical Basis of Minerals (sizes, shapes & directions) Camosun College GEOS 250.
Atomic data: state of the art and future perspectives Jelle Kaastra with Ton Raassen, Liyi Gu, Junjie Mao, Igone Urdampilleta, Missagh Mehdipour SRON &
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Atomic Physics with Supercomputers. Darío M. Mitnik.
Molecular Dynamics Study of Ballistic Rearrangement of Surface Atoms During Ion Bombardment on Pd(001) Surface Sang-Pil Kim and Kwang-Ryeol Lee Computational.
Operated by the Los Alamos National Security, LLC for the DOE/NNSA IAEA CODE CENTRE NETWORK SEPT 2010 Recent Developments with the Los Alamos Atomic Physics.
NIST Spectroscopic Research on Heavy Elements Wolfgang L Wiese National Institute of Standards and Technology (NIST), USA.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Neutron Capture Cross Sections from 1 MeV to 2 MeV by Activation Measurements Korea Institutes of Geoscience and Mineral Resource G.D.Kim, T.K.Yang, Y.S.Kim,
The CHIANTI Atomic Database An Overview of Data, Software and Applications Dr Peter Young George Mason University, USA NASA Goddard Space Flight Center,
Discovery of K  lines of neutral S, Ar, Ca, Cr, & Mn atoms from the Galactic center with Suzaku Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru,
Atomic Radiation Processes in AGN Julian Krolik Johns Hopkins University.
The 2p-3d Electron Transition Multiplet of Ar +13 : A Stellar Density Diagnostic Laura Heeter Kristina Naranjo-Rivera
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Hale COLLAGE (CU ASTR-7500) “Topics in Solar Observation Techniques” Lecture 8: Coronal emission line formation Spring 2016, Part 1 of 3: Off-limb coronagraphy.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Key experiment planned at HITRAP Precision spectroscopy of singly and doubly-excited states of slow HCI Max- Planck-Institut für Kernphysik, Heidelberg.
IAS 20 June 2013 Celebrating the achievements of Alan Gabriel Laboratory spectroscopy Exploring the process of dielectronic recombination S. Volonte.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Solar gamma-ray and neutron registration capabilities of the GRIS instrument onboard the International Space Station Yu. A. Trofimov, Yu. D. Kotov, V.
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Emission of Energy by Atoms and Electron Configurations
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Spectroscopic Research Projects on Heavy Elements at NIST
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
Electron Configurations
Line Spectra and the Bohr Model
Electron Configurations and the Periodic Table
Presentation transcript:

Anisotropic dielectronic resonances from magnetic-dipole lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS Workshop, 2013 Supported in part by the Office of Fusion Energy Sciences, U.S. DoE

Analyzing 10,000-eV dielectronic resonances with 80-eV forbidden lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS Workshop, 2013 Supported in part by the Office of Fusion Energy Sciences, U.S. DoE

Yu. Ralchenko & J.D. Gillaspy Physical Review A 88, (2013)

Radiative recombination  Continuum Bound states Ion recombined

DR step 1: dielectronic capture  Continuum Bound states Resonant process!

Continuum Bound states Dielectronic capture + autoionization = no recombination DC and AI are direct and inverse

DR step 2: radiative stabilization  Continuum Bound states Stabilizing transition: Mostly x-rays

Dielectronic recombination in plasmas Z Z+1 … Maxwellian Electrons are present at all energies (Infinite) Series of transitions are to be accounted for

DR measurements on EBITs EBIT electron beam extracted ions Is ionization distribution the same inside and outside the trap?..NO! 1.Extract ions 2.Measure ionization distribution Beam energy time ERER ERER ERER Fast beam ramping DR energy generally does not coincide with the energy of max abundance

DR resonances with M-shell (n=3) ions LMN resonances: L electron into M, free electron into N 1s 2 2s 2 2p 6 3s 2 3p 6 3d n

Calculation of LMn DR strength: Ca-like 3d 2 W 54+ 2s 1/2  3d 2p 1/2  3d 2p 3/2  3d e  3d e  4l e  5l 2s 1/2  3d 2p 1/2  3d 2p 3/2  3d e  3d e  4l e  5l 1s 2 (2s2p) 8 3s 2 3p 6 3d + e  1s 2 (2s2p) 7 3s 2 3p 6 3d 2 nl Relativistic model potential + QED corrections (Flexible Atomic Code, Gu 2008) Relativistic model potential + QED corrections (Flexible Atomic Code, Gu 2008)

Strategy 1.Scan electron beam energy with a small step (a few eV) 2.When a beam hits a DR, ionization balance changes 3.Both the populations of all levels within an ion and the corresponding line intensities change as well 4.Measure line intensity ratios from neighbor ions and look for resonances 5.EUV lines: forbidden magnetic-dipole lines within the ground configuration A(E1) ~ s -1 A(M1) ~ s -1 I = N  A  E (intensity) Ionization potential Ca-like W 54+

Beam energy: 0.1 keV – 30 keV Beam resolution: ~50 eV Beam current: ≤ 150 mA Beam radius: ~30 μm Electron density: ~10 12 cm -3 Can produce > 60-times ionized atoms Ar, Kr, Xe, Sn, Ti, Sm, Gd, Dy, Er, Hf, Ta, W, Pt, Au, Bi,… NIST Electron Beam Ion Trap x10 Monoenergetic beam allows one to “touch” dielectronic resonances

Yu. Ralchenko et al, Phys. Rev. A 83, (2011) Almost all lines are M1 Good statistics Isolated lines Pair of lines: (a) within 3d in K-like W 55+ (b) within 3d 2 in Ca-like W 54+ EUV spectrum of W 47+ -W 56+ : M1 lines within 3d n ground configurations

[Ca]/[K]

[Ca]/[K]: THEORY: no DR Modeling: CR code NOMAD, atomic data from FAC

[Ca]/[K] THEORY: no DR

[Ca]/[K] THEORY: no DR isotropic DR Non-Maxwellian (40-eV Gaussian) collisional-radiative model: ~10,500 levels

[Ca]/[K] THEORY: no DR isotropic DR anisotropic DR atomic level degenerate magnetic sublevels J m=-J m=+J Impact beam electrons are monodirectional Non-Maxwellian (40-eV Gaussian) collisional-radiative model: ~10,500 levels

[Ca]/[K] THEORY: no DR isotropic DR anisotropic DR atomic level degenerate magnetic sublevels J m=-J m=+J Impact beam electrons are monodirectional Non-Maxwellian (40-eV Gaussian) collisional-radiative model: ~18,500 levels

[Ca]/[K] 2p 3/2  3d e  4l 2p 3/2  3d e  4l

One EBIT run, several ions… Ca n=4 Sc Ti

Where are the 10-keV photons?.. 2p 5 3s 2 3p 6 3d n+1 4l 2s 1/2 2p 1/2 2p 3/2 3s 3p 3d 4s 4p 4d 4f ~8keV ~9keV ~11keV

X-ray emission (Ge detector) 2p 5 3/2 -4l 2p 5 3/2 -3d 2p 5 3/2 -3s B and C: horizontal A: slant  n>0 transitions into the 2p 3/2 hole

Conclusions A new in situ method to measure multi-keV dielectronic resonances in 3d n ions using ratios of EUV magnetic-dipole lines First resolved measurements of LMN resonances in ~55-times ionized W CR modeling shows importance of anisotropic effects on ionization balance Isolated resonances allow determination of the beam width

Probability of dielectronic recombination Z Z+1 … dielectronic capture  A a autoionization A a radiative decay A r

Examples of dielectronic recombination & resonances A. Burgess, ApJ 139, 776 (1964) This work solved the ionization balance problem for solar corona Ar at NSTX, Bitter et al (2004) Dielectronic satellites are important for plasma diagnostics (e.g., He- and Li-like ions) BUT: DR for high-Z multi-electron ions is barely known! BUT: DR for high-Z multi-electron ions is barely known!

Why is DR analysis still important? With DRWithout DR NLTE-6 Code Comparison Workshop Example: NLTE-6 Code Comparison Workshop, 2009; Ar at cm -3

LMM resonances in Ti-like Ba 34+ McLaughlin et al, Phys. Rev. A 54, 2040 (1996) One of the first NIST EBIT papers

B. Blagojevic et al, Rev. Sci. Instrum., 76, (2005). Grazing incidence diffraction grating Resolving power R=350 Optimized for weak signals EUV spectrometer