Physics 1B03summer-Lecture 13 Final Exam April 18 2 hours long – 30 MC questions Covers all material with approximately equal weight, up to and including.

Slides:



Advertisements
Similar presentations
November 18 AP Physics.
Advertisements

Chapter 9 Fluids.
Physics 101: Lecture 25, Pg 1 Physics 101: Lecture 25 Fluids in Motion: Bernoulli’s Equation l Today’s lecture will cover Textbook Sections
The Bernoulli Equation - Work and Energy
Fluids Mechanics Carlos Silva December 2 nd 2009.
Continuity of Fluid Flow & Bernoulli’s Principle.
Fluid Dynamics AP Physics B.
Physics 203 College Physics I Fall 2012
Fluid in Motion.
Fluids & Bernoulli’s Equation Chapter Flow of Fluids There are two types of flow that fluids can undergo; Laminar flow Turbulent flow.
Lecture 3 Bernoulli’s equation. Airplane wing Rear wing Rain barrel Tornado damage.
Fluids Physics 202 Professor Vogel (Professor Carkner’s notes, ed) Lecture 20.
Chapter 9 Solids and Fluids (c).
Physics 151: Lecture 30 Today’s Agenda
Chapter 9 Solids and Fluids (c).
Fluid Flow 1700 – 1782 Swiss physicist and mathematician. Wrote Hydrodynamica. Also did work that was the beginning of the kinetic theory of gases. Daniel.
D. Roberts PHYS 121 University of Maryland Physic² 121: Phundament°ls of Phy²ics I December 4, 2006.
Unit 3 - FLUID MECHANICS.
Chapter 15B - Fluids in Motion
Fluids Fluids in Motion. In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the.
AP Physics II.A – Fluid Mechanics.
Fluid Dynamics. Floating An object floats on a fluid if its density is less than that of the fluid When floating F B = F W ρ f V disp g = ρ o V o g ρ.
PHAROS UNIVERSITY ME 259 FLUID MECHANICS FOR ELECTRICAL STUDENTS Basic Equations for a Control Volume.
Lecture 9 (1) Physics in Life Sciences Fluid flow in human body2.
R. Field 10/29/2013 University of Florida PHY 2053Page 1 Ideal Fluids in Motion Bernoulli’s Equation: The Equation of Continuity: Steady Flow, Incompressible.
Physics 1B03summer-Lecture 12 1 Day of Wrath Tuesday June 16 9:30-11:30 am CNH MC Questions, Cumulative.
Chapter 11 Fluids. Density and Specific Gravity The density ρ of an object is its mass per unit volume: The SI unit for density is kg/m 3. Density is.
Fluids - Dynamics Level 1 Physics. Fluid Flow So far, our discussion about fluids has been when they are at rest. We will Now talk about fluids that are.
Warm-up Pick up the free response at the door and begin working on it.
Chapter 15 Fluid Mechanics.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 10 - Part 3 Chapter 11 –
Chapter Fluid pressure and temperature. Pressure  What happens to your ears when you ride in an airplane?  What happens if a submarine goes.
Monday, November 9, 1998 Chapter 9: Archimedes’ principle compressibility bulk modulus fluids & Bernoulli’s equation.
T W DAVIES1 CONSERVATION OF MECHANICAL ENERGY FRICTIONLESS FLOW ALONG A STREAMLINE MECHANICAL ENERGY BALANCE ON A UNIT MASS OF FLUID –POTENTIAL ENERGY.
Wednesday, Nov. 24, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Quiz Workout 2.Buoyant Force and Archimedes’ Principle 3.Flow Rate and Continuity Equation.
Fluid Dynamics AP Physics B.
Thursday 6/18 PHYS 2010 Nathalie Hoffmann University of Utah.
Unless otherwise noted, the content of this course material is licensed under a Creative Commons BY 3.0 License.
Formative Assessment. 1. Water flows at m/s down a pipe with an inner diameter of 1.27 cm. If the pipe widens to an inner diameter of 5.08 cm, what.
Physics 1501: Lecture 32, Pg 1 Physics 1501: Lecture 32 Today’s Agenda l Homework #11 (due Friday Dec. 2) l Midterm 2: graded by Dec. 2 l Topics: çFluid.
Lecture Outline Chapter 9 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Subdivisions of matter solidsliquidsgases rigidwill flowwill flow dense dense low density and incompressible and incompressible compressible fluids condensed.
Fluid Flow Continuity and Bernoulli’s Equation
Fluids in Motion.
Reference Book is. 2. The flow is steady. In steady (laminar) flow, the velocity of the fluid at each point remains constant. Fluid DYNAMICS Because the.
Physics Section 8.3 Apply the properties of flowing fluids The flow of a fluid is laminar if every particle that passes a particular point moves along.
Herriman High AP Physics 2 Chapter 9 Solids and Fluids.
NNPC FSTP ENGINEERS Physics Course Code: Lesson 7.
MFSacedon Study of Fluids. MFSacedon Fluids in Motion Topics: Fluid flows Continuity equation Bernoulli ‘s Energy Equation.
UNIVERSITY OF GUYANA FACULTY OF NATURAL SCIENCES DEPART. OF MATH, PHYS & STATS PHY 110 – PHYSICS FOR ENGINEERS LECTURE 14 (THURSDAY, DECEMBER 8, 2011)
Bernoulli Equation – Pitot tube  Horizontal  Velocity at stagnation point is 0  Incompressible fluid  Steady state  Velocity as function of pressure.
Fluid Flow conservation and continuity § Volume Flow Rate Volume per time through an imaginary surface perpendicular to the velocity dV/dtunits:
Physics. Session Fluid Mechanics - 2 Session Objectives.
Hello! I’m Chris Blake, your lecturer for the rest of semester
Bernoulli and Flow Continuity.  U-Tube Manometer  Used to measure pressure of a fluid  Principles involved: ◦ The pressure is the same in equal elevations.
Pressure in Fluid A fluid exerts pressure in all directions. At any point in a fluid at rest, the pressure is the same in all direction. The force due.
Chapter 15B - Fluids in Motion
Chapter 11 Fluids.
Fluid Dynamics AP Physics 2.
Bernoulli’s Principle
The Bernoulli Equation
Fluids in Motion Includes equation of continuity (mass flow rate) and Bernoulli’s equation.
Fluids Liquids and Gases Chapter 11.
Reminder: HW #10 due Thursday, Dec 2, 11:59 p.m.
FLUIDS IN MOTION The equations that follow are applied when a moving fluid exhibits streamline flow. Streamline flow assumes that as each particle in the.
© Laura Fellman, PCC Rock Creek Campus
Fluid Dynamics AP Physics B.
 More Fluids  November 30,  More Fluids  November 30, 2010.
We assume here Ideal Fluids
9. FLUID FLOW: Working Problems
Presentation transcript:

Physics 1B03summer-Lecture 13 Final Exam April 18 2 hours long – 30 MC questions Covers all material with approximately equal weight, up to and including today’s final lecture on fluids.

Physics 1B03summer-Lecture 13 Fluid Dynamics Equation of Continuity Bernoulli’s equation and examples

Physics 1B03summer-Lecture 13 Fluid Dynamics Approximations: 1)no viscosity (frictionless flow) 2)steady, “laminar” flow. If the flow is turbulent, mechanical energy is lost (converted to thermal energy). 3)“incompressible” fluid. Sufficiently accurate for gases if pressure differences are small.

Physics 1B03summer-Lecture 13 Streamlines -the paths followed by particles in steady flow -velocity is parallel to the streamline - particles never cross streamlines; the streamlines mark out imaginary “tubes of flow” area A 1 speed v 1 area A 2 speed v2

Physics 1B03summer-Lecture 13 Equation of Continuity “Volume flow rate” (volume per unit time) = (cross-sectional area)  (linear velocity) “Mass flow rate” (mass per unit time) = (density)  (volume flow rate) So, if mass in = mass out, then  1 A 1 v 1 =  2 A 2 v 2  Av = mass flow rate = constant or for steady flow. “Incompressible” fluids (density remains uniform): cancel out density to get Volume flow rate = constant or A 1 v 1 = A 2 v 2

Physics 1B03summer-Lecture 13 radius r 1 = 10mm radius r 2 = 5mm A fluid if flowing through a pipe of 10mm radius at a velocity of 10m/s. How fast will it be flowing if the pipe narrows to 5mm in radius ?

Physics 1B03summer-Lecture 13 Bernoulli’s Equation: work and energy in fluids Conditions: steady flow, incompressible fluid. Look at energy balance along a streamline: Change in (kinetic energy/volume) + change in (potential energy/volume) = (net work by pressure)/volume then, or, Note: the above equation looks similar what we have seen before if we replace ρ by m.

Physics 1B03summer-Lecture 13 Example a) What is the velocity of the water leaving the little hole b) How far (horizontally) from the hole does the water hit the ground? d h x

Physics 1B03summer-Lecture 13 Example What is the speed of the water leaving the hole in the tank? gauge pressure P 0 h v

Physics 1B03summer-Lecture 13 Example Water moving at 10m/s through a 1m radius pipe at a pressure of 50kPa. It then falls 50m and goes into a 0.3m radius pipe. What is the water pressure at the bottom ? h