Procrustes Analysis and Its Application in Computer Graphics Speaker: Lei Zhang 2008/10/08
What is Procrustes Analysis Wikipedia 削足适履 Procrustes analysis is the name for the process of performing a shape-preserving Euclidean transformation. Procrustes [ pr ə u’kr Λ sti:z ] Procrustean
Procrustes Problem Given
Procrustes Problem Given, find
Procrustes Problem Given, find
Procrustes Problem Orthogonal Procrustes Problem (OPP) Given P. H. Schoenemann. A generalized solution of the orthogonal Procrustes problem
Procrustes Problem Extended Orthogonal Procrustes Problem Given P. H. Schoenemann, R. Carroll. Fitting one matrix to another under choice of a central dilation and a rigid motion
Procrustes Problem Rotation Orthogonal Procrustes Problem Given G. Wahba. A least squares estimate of satellite attitude
Procrustes Problem Permutation Procrustes Problem (PPP) Given J. C. Gower. Multivariate analysis: ordination, multidimensional scaling and allied topics
Procrustes Problem Symmetric Procrustes Problem (SPP) Given H. J. Larson. Least squares estimation of the components of a symmetric matrix
Who is Procrustes Greek Mythology –One who stretches –A.k.a Polypemon –A.k.a Damastes Theseus Poseidon
Peter H. Schonemann Professor At Department of Psychological Science, Purdue University P. H. Schoenemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika, J. C. Gower, G. B. Dijksterhuis. Procrustes problems. Oxford University Press, 2004.
Applications Factor analysis, statistic Satellite tracking Rigid body movement in robotics Structural and system identification Computer graphics Sensor Networks
Reference Olga Sorkine, Marc Alexa. As-rigid-as-possible surface modeling. SGP M. B. Stegmann, D. D. Gomez. A brief introduction to statistical shape analysis. Lecture notes. Denmark Technical University. Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, Steven J. Gorlter. A local/global approach to mesh parameterization. SGP Lei Zhang, Ligang Liu, Guojin Wang. Meshless parameterization by rigid alignment and surface reconstruction Lei Zhang, Ligang Liu, Craig Gotsman, Steven J. Gorlter. An as- rigid-as-possible approach to sensor networks localization. Submitted to IEEE INFOCOM 2009.
Shape Deformation
Good Shape Deformation Smooth effect on the large scale approximation Preserve detail on the local structure
Direct Local Structure Small-sized Cells –Smooth surface
Direct Local Structure Small-sized Cells –Discrete surface
Direct Detail Preserve Shape-preserving transformation
Rotation Transformation
Rotation Orthogonal Procrustes Problem
Procrustes Analysis
S igular V alue D ecomposition
Procrustes Analysis S igular V alue D ecomposition
Local Rigidity Energy
b is known, calculate R by Procrustes analysis R is known, calculate b by least-squares optimization (Laplace equation)
Alternating Least-squares Initial guess 1 iterationFinal result b is known, calculate R by Procrustes analysis R is known, calculate b by least-squares optimization (Laplace equation)
Results Procrustes in shape deformation
Shape Registration
What is Shape Shape is all the geometrical information that remains when location, scale and rotational effects are filtered out from an object. --I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. 1998
Shape Representation Landmarks
Shape Registration Euclidean transformation Translation Similarity Rotation Landmark correspondence
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
GPA Translation
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
GPA Similarity
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
GPA Rotation Rotation Orthogonal Procrustes Problem
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
GPA Calculate new mean shape
Algorithm G eneralized Orthogonal P rocrustes A nalysis (GPA) a)Move centroid of each shape to origin; b)Normalize each shapes centroid sized; c)Rotate each shape to approximate the mean shape. Translation Similarity Rotation Initial: select default mean shape Align: Calculate the new mean shape Repeat
Results Procrustes in shape analysis
Mesh Parameterization
Problem Setting 3D mesh2D parameterization Keep distortion as minimal as possible
Distortion Measure is Jacobian of, is singular value of 1. Angle-preserving (i.e. conformal mapping) 2. Area-preserving (i.e. authalic mapping) 3. Shape-preserving (i.e. isometric mapping) Floater, M. S. and Hormann, K. Surface parameterization: a tutorial and survey. 2004
Distortion Measure Conformal mappingAuthalic mapping isometric mapping = conformal + authalic
3D mesh2D parameterization Reference triangles isometric
Procrustes Analysis Reference triangle2D parameterization Procrustes Problem Isometric Conformal Authalic
Procrustes Analysis isometricconformalauthalic
Shape-preserving isometric transformation Rotation Orthogonal Procrustes Problem
Angle-preserving Similarity Procrustes Problem conformal transformation
Area-preserving Procrustes Problem Authalic transformation
Parameterization Shape : as-rigid-as-possible parameterization (ARAP) Angle: as-similar-as-possible parameterization (ASAP) Area: as-authalic-as-possible parameterization (AAAP) Alternating least - squares ( ALS )
Model A R APA S APA A AP
ASAP vs. ARAP A S AP A R AP
Insight ASAP ARAP *Equivalent to LSCM: Levy, B., et al. Least squares conformal maps for atutomatic texture atlas generation. Siggraph 2002.
Comparison [HG99] MIPS: an efficient global parameterization method. In Proc. Of Curves and Surfaces. [DMK03] An adaptable surface parameterization method. In Proc. Of 12 th International Meshing Roundtable.
ASAP: ARAP: ABF: IC: CP: ABF: Sheffa, et al, TOG, 2005 IC: Gu, et al, TVCG, 2008 CP: Gotsman, et al, EG 2008
ASAP: ARAP: ABF: IC: CP: ABF: Sheffa, et al, TOG, 2005 IC: Gu, et al, TVCG, 2008 CP: Gotsman, et al, EG 2008
ABF: ARAP: Procrustes in parameterization
Surface Reconstruction
Problem Setting Points SetReconstruction
Meshless Parameterization Points Set Reconstruction Parameterization Delaunay triangulation
Local Tangent Flattening
Rigid Alignment F o r e a c h p o i n t Rotation Orthogonal Procrustes Problem
Parameterization Alternating Least Squares B is known, calculate R by Procrustes analysis R is known, calculate B by least-squares optimization (Laplace equation)
Initialization Affine Alignment Linear least-squares w.r.t A and a, b, c, d
Affine Alignment Points Set Affine alignment
Rigid alignment Affine alignment
Delaunay Triangulation Remove redundant triangle
Results Floater, et al, CAGD, 2001Roweis, et al, Science, 2001Our approach
Texture Mapping Floater, et al, CAGD, 2001Roweis, et al, Science, 2001Our approach
Floater, et al, CAGD, 2001Roweis, et al, Science, 2001Our approach
Texture Mapping Floater, et al, CAGD, 2001Roweis, et al, Science, 2001Our approach Procrustes in surface reconstruction
Summary Procrustes Analysis –Euclidean transformation –Direct estimate of shape transformation –Versatile Shape deformation Shape analysis Mesh parameterization Surface reconstruction ……
Thanks for your attention!
Q&A