doc.: IEEE /1609r0 Submission Adaptive CCA and TPC September, 2015 Slide 1 Date: Authors: James Wang, Mediatek, et. al. NameAffiliationAddressPhone James Wang Mediatek USA 2860 Junction Ave, San Jose, CA 95134, USA Thomas Pare ChaoChun Wang om Jianhan Liu Tianyu Wu Russell Huang m James Yee Mediatek No. 1 Dusing 1 st Road, Hsinchu, Taiwan Alan Jauh Chingwa Hu m Frank Hsu
doc.: IEEE /1609r0 Submission September, 2015 Slide 2 Authors (continued) James Wang, Mediatek, et. al. NameAffiliationAddressPhone Albert Van Zelst Qualcomm Straatweg 66-S Breukelen, 3621 BR Netherlands Alfred Asterjadhi 5775 Morehouse Dr. San Diego, CA, USA Arjun Bharadwaj 5775 Morehouse Dr. San Diego, CA, USA Bin Tian 5775 Morehouse Dr. San Diego, CA, USA Carlos Aldana 1700 Technology Drive San Jose, CA 95110, USA George Cherian 5775 Morehouse Dr. San Diego, CA, USA Gwendolyn Barriac 5775 Morehouse Dr. San Diego, CA, USA Hemanth Sampath 5775 Morehouse Dr. San Diego, CA, USA Menzo Wentink Straatweg 66-S Breukelen, 3621 BR Netherlands Richard Van Nee Straatweg 66-S Breukelen, 3621 BR Netherlands Rolf De Vegt 1700 Technology Drive San Jose, CA 95110, USA Sameer Vermani 5775 Morehouse Dr. San Diego, CA, USA Simone Merlin 5775 Morehouse Dr. San Diego, CA, USA Tevfik Yucek 1700 Technology Drive San Jose, CA 95110, USA VK Jones 1700 Technology Drive San Jose, CA 95110, USA Youhan Kim 1700 Technology Drive San Jose, CA 95110, USA
doc.: IEEE /1609r0 Submission September, 2015 Slide 3 Authors (continued) James Wang, Mediatek, et. al. NameAffiliationAddressPhone Robert Stacey Intel 2111 NE 25th Ave, Hillsboro OR 97124, USA Eldad Perahia Shahrnaz Azizi Po-Kai Huang Qinghua Li Xiaogang Chen Chitto Ghosh Laurent cariou Rongzhen Yang Ron Porat Broadcom Matthew Fischer Sriram Venkateswaran Andrew Blanksby Matthias Korb Tu Nguyen Vinko Erceg
doc.: IEEE /1609r0 Submission September, 2015 Slide 4 Authors (continued) James Wang, Mediatek, et. al. NameAffiliationAddressPhone Phillip Barber Huawei The Lone Star State, TX ch.com Peter Loc Le Liu F1-17, Huawei Base, Bantian, Shenzhen Jun (Rossi) Luo 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai Yi Luo F1-17, Huawei Base, Bantian, Shenzhen Yingpei Lin 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai Jiyong Pang 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai Zhigang Rong Telesis Court, Suite 365, San Diego, CA NA Rob Sun 303 Terry Fox, Suite 400 Kanata, Ottawa, Canada David X. Yang F1-17, Huawei Base, Bantian, Shenzhen Yunsong Yang Telesis Court, Suite 365, San Diego, CA NA Zhou Lan F1-17, Huawei Base, Bantian, SHenzhen Junghoon Suh 303 Terry Fox, Suite 400 Kanata, Ottawa, Canada Jiayin Zhang 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai
doc.: IEEE /1609r0 Submission September, 2015 Slide 5 Authors (continued): NameAffiliationAddressPhone Hongyuan Zhang Marvell 5488 Marvell Lane, Santa Clara, CA, Yakun Sun Lei Wang Liwen Chu Jinjing Jiang Yan Zhang Rui Cao Bo Yu Sudhir Srinivasa Saga Tamhane Mao Yu Edward Au Hui-Ling Lou James Wang, Mediatek, et. al. Joonsuk Kim Apple Aon Mujtaba Guoqing Li Eric Wong Chris
doc.: IEEE /1609r0 Submission September, 2015 Slide 6 Authors (continued) James Wang, Mediatek, et. al. Bo Sun ZTE #9 Wuxingduan, Xifeng Rd., Xi'an, China Kaiying Lv Yonggang Fang Ke Yao Weimin Xing Brian Hart Cisco Systems 170 W Tasman Dr, San Jose, CA Pooya Monajemi NameAffiliationAddressPhone Hyeyoung Choi LG Electronics 19, Yangjae-daero 11gil, Seocho-gu, Seoul , Korea Kiseon Ryu Jinyoung Chun Jinsoo Choi Jeongki Kim Giwon Park Dongguk Lim Suhwook Kim Eunsung Park HanGyu Cho Thomas DerhamOrange
doc.: IEEE /1609r0 Submission September, 2015 Slide 7 Authors (continued) James Wang, Mediatek, et. al. NameAffiliationAddressPhone Fei Tong Samsung Innovation Park, Cambridge CB4 0DS (U.K.) Hyunjeong Kang Maetan 3-dong; Yongtong-Gu Suwon; South Korea Kaushik Josiam 1301, E. Lookout Dr, Richardson TX (972) Mark Rison Innovation Park, Cambridge CB4 0DS (U.K.) Rakesh Taori 1301, E. Lookout Dr, Richardson TX (972) Sanghyun Chang Maetan 3-dong; Yongtong-Gu Suwon; South Korea Yasushi Takatori NTT 1-1 Hikari-no-oka, Yokosuka, Kanagawa Japan Yasuhiko Inoue Yusuke Asai Koichi Ishihara Akira Kishida Akira Yamada NTT DOCOMO 3-6, Hikarinooka, Yokosuka- shi, Kanagawa, , Japan Fujio Watanabe 3240 Hillview Ave, Palo Alto, CA com Haralabos Papadopoulos tions.com
doc.: IEEE /1609r0 Submission Outline Interference problems for spatial reuse transmission Adaptive CCA and TPC schemes Conclusions Slide 8James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission Interference Problem for Spatial Re-use In Ref[11], a 4 BSSs/40STAs scenario is presented CCA prevents high percentage of spatial re-use transmission (>90% for CCA=- 82dBm) Significant percentage of spatial re-use transmission (shaded area: >30%) will affect the MCSs of the on-going frame exchange Slide 9 Spatial re-use induced collision causes loss in throughput before link can adapt to lower MCSs. Interference mitigation (such as Normalized distance (by that of MCS0) between primary nodes 4BSSs/40STAs, all TX Power = 15 dBm transmit power control) should be employed during SR transmission to avoid collision with on-going frame exchange in a dense environment TPC needed to avoid collisions Spatial Re-use Possible Higher MCS James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission Adaptive CCA/TPC Schemes To achieve higher spatial re-use in a dense environment, the following step are needed. –Detect and identify whether a received PPDU is from inter-BSS or intra-BSS (e.g., via BSS Color) –for OBSS PPDUs, employ an OBSS specific channel access procedure for spatial re-use (such as employing a OBSS_PD CCA threshold) –initiate a spatial re-use transmission under specific conditions (such as employs transmit power adjustment) Higher OBSS CCA threshold increases spatial re-use. However, to –avoid interference to OBSS transmission –maintain fairness to legacy STAs the OBSS CCA threshold should be accompanied by a TXPWR value and a reduction in the TXPWR should be allowed to be accompanied by an increase in the OBSS CCA threshold value. There are many contributions (e.g, Ref 1~12) on this subject. Specific methods (Ref 1~12) of adaptive CCA and TPC implementations are still subject to further investigation and comparison. Slide 10 James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission An Example of Adaptive CCA/PC Scheme STA’s OBSS_PD threshold and transmit power are based on received RSSI (e.g, received RCPI of the beacon or path loss) and constants determined by AP –Adjusted_TX_Pwr = TX_Pwr nominal –RSSI AP +constant 1 –Adjusted_OBSS_PD = OBSS_PD nominal + RSSI AP + constant 2 Limits the OBSS_PD threshold to be –-82dBm<Adj_CCA<-62 dBm (Note: OBSS_PD for AP can be set to the value based on the farthest STA.) Slide 11 Less adjustment More adjustment Higher SR, Lower TX PWR Lower SR, Higher TX PWR James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission Simulation Results for the Example Adaptive CCA/TPC Scheme Simulation Scenario 6, 11ax BSS BSS B (middle) achieves the highest throughput improvement. BSS A and BSS C (edge) also achieve significant throughput improvement. Slide 12 BSS B BSS A BSS C BSSAdaptive CCA TPC Gput (Mbps) Baseline Gput (Mbps) Gput Improvement (%) A B C Total James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission Simulation Results for the Example Adaptive CCA/TPC Scheme Simulation results of a mixed 11ax BSS and legacy BSS (BSS B is legacy BSS) Note that legacy BSS performance is not degraded Slide 13 BSSAdaptive CCA TPC Gput (Mbps) Baseline Gput (Mbps) Gput Improvement (%) A B C Total James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission Sony’s Simulation Results – SS1 (All of STAs are Ax-STA) Slide 14 September 2015 (Offered DL load=60Mbps) Offered UL load When TPC and DCCA(DSC/DOCCA) are used together, larger gain can be obtained than when TPC/DCCA is used alone. From Ref 12 James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission Sony’s Simulation Results for SS1 (All of STAs are Ax-STA) Slide 15 September 2015 Uplink Downlink DCCA(DSC/DOCCA) can deteriorate the 5%tile throughput when used alone. On the other hand, when TPC is used with DCCA, 5%tile throughput can be improved. DCCA(DSC/DOCCA) can deteriorate the 5%tile throughput when used alone. On the other hand, when TPC is used with DCCA, 5%tile throughput can be improved. From Ref 12 James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission Conclusions In this contribution, simulation results for adaptive CCA/TPC show that higher network throughput can be achieved while maintaining fairness to legacy STA and 5 percentile performance. Propose that for adaptive CCA/TPC scheme, the OBSS CCA threshold in the adaptive CCA/TPC scheme should be accompanied by a TXPWR value and a reduction in the TXPWR should be accompanied by an increase in the OBSS CCA threshold value Slide 16 James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission Straw Poll When an 11ax STA detects a valid OBSS PPDU it may discard the PPDU if the RXPWR of the received PPDU is below the OBSS_PD threshold and TBD conditions are met, noting that the OBSS_PD threshold is accompanied by a TXPWR value and a reduction in the TXPWR may be accompanied by an TBD increase in the OBSS_PD threshold value. –Yes: –No: –Abstain: Slide 17 James Wang, Mediatek, et al
doc.: IEEE /1609r0 Submission Backup Charts Slide 18Mediatek
doc.: IEEE /1609r0 Submission Scenario Description (slides 12 and 13) ac Enterprise Network with OBSS, Scenario 6. DCN: ac-tgac-functional-requirements-and- evaluation-methodology Parameters: – ac 20MHz overlapped BSS BSS A: 5 STAs BSS B: 20 STAs BSS C: 5 STAs –AP Tx power: 20 dBm –STA Tx power: 15 dBm –ED CCA threshold: -62 dBm –Fixed Rate: MCS5 –EDCA, AC_BE, [CWmin = 15, CWmax = 1023], AIFSn = 3 –MSDU Packet size: 1500 bytes –full buffer BSS A StationUL STA3Y STA9Y STA15Y STA21Y STA27Y BSS C StationUL STA6Y STA12Y STA18Y STA24Y STA30Y BSS B StationUL STA1Y STA2Y STA4Y STA5Y STA7Y STA8Y STA10N STA11N STA13N STA14N STA16N STA17N STA19N STA20N STA22Y STA23Y STA25Y STA26Y STA28Y STA29Y Slide 19James Wang,Mediate,k et al
doc.: IEEE /1609r0 Submission Reference [1] DCN r1 “The Effect of Preamble Error Model on MAC Simulator”, Po-Kai Huang, Intel [2] DCN r0 “OBSS preamble detection”, Gwen Barriac, Qualcomm [3] DCN “Spatial Reuse and Coexistence with Legacy Devices” James Wang, Mediatek [4] DCN r1 “Improved Spatial Reuse Feasibility – Part I” Ron Porat, Broadcom [5] DCN “Link Aware CCA” Brian Hart, Cisco [6]DCN “Spatial Reuse and Coexistence with Legacy Devices” James Wang, Mediatek [7] DCN r1 “OBSS reuse mechanism which preserves fairness” Imad Jamil, Orange [8] DCN r1 “CCA Study in Residential Scenario - Part 2” Gwen Barriac, Qualcomm [9] DCN r0 “CCA Study in Residential Scenario”, Gwen Barriac, Qualcomm [10] DCN r2 “Considerations for Adaptive CCA” Reza Hedayat, Newracom [11] DCN r0 “CCA Revisited” Amin Jafarian, Newracom [12[ DCN r0 Sony Dynamic CCA control and TPC Simulation Results Slide 20James Wang,Mediate,k et al