The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Morgan McCabe and Steven Shipman New College of Florida
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Waveguide Chirped-Pulse FTMW Spectroscopy Steven T. Shipman, 1 Justin L. Neill, 1 Brett Kroncke, 1 Brooks H. Pate, 1 and P. Groner 2 1 University of Virginia.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Waveguide Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrum of Allyl Chloride Erin B. Kent, Morgan N. McCabe, Maria A. Phillips, Brittany P.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
A FABRY-PERÓT CAVITY PULSED FOURIER TRANSFORM W-BAND SPECTROMETER WITH A PULSED NOZZLE SOURCE. GARRY S. GRUBBS II, CHRISTOPHER T. DEWBERRY AND STEPHEN.
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Structures of the cage, prism and book hexamer water clusters from multiple isotopic substitution Simon Lobsiger, Cristobal Perez, Daniel P. Zaleski, Nathan.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
R. D. Suenram, Justin Lindsay Neill, Jason J. Pajski, Gordon G. Brown, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy of 2-Ethoxyethanol Maria A. Phillips, Steven Shipman New College of Florida.
Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Cori L. Christenholz, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry,
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Bri Gordon Steven T. Shipman New College of Florida
An Improved Analysis of the Sevoflurane ⋯ Benzene Structure by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin L. Neill,
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Broadband Microwave Spectroscopy and Automated Analysis of 12 Conformers of 1-Hexanal Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin L.
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
UTILIZING SPECTROSCOPIC RESEARCH TOOLS AND SOFTWARE IN THE CLASSROOM RC10, 70 th International Symposium on Molecular Spectroscopy June 22-26, 2015, Urbana,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
The microwave spectrum of cyanophosphaacetylene, H 2 P−C≡C−C≡N Lu Kang Department of Natural Sciences, Union College, Barbourville, KY Andrea J.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Department of Chemistry
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
Characterisation and Control of Cold Chiral Compounds
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Verbenone
The CP-FTMW Spectrum of Bromoperfluoroacetone
Aimee Bell, Omar Mahassneh, James Singer,
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
Michal M. Serafin, Sean A. Peebles
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin L. Neill 2, Alberto Lesarri 3, and Brooks H. Pate 2 1 : Department of Natural Sciences, Union College, KY 40906, USA 2 : Department of Chemistry, University of Virginia, VA 22904, USA 3 : Departmento de Quimica Fisica, Universidad de Valladolid, SPAIN

A challenge of FP-FTMW below 4 GHz  Fabry-Perót cavity: Q ~ 10,000  Fresnel number:  Solutions to the low frequency bands  Increase a: Arunan, Emilsson, Gutowsky J. Chem. Phys. 101, 861, (1994)  Decrease R: Etchison, Dewberry, Kerr, Cooke J. Mol. Spectrosc. 242, 39, (2007)  Cylindrical resonator: TE 01 mode Storm, Dreizler, Consalvo, Grabow, Merke Rev. Sci. Instrum. 67(8), 2714, (1996)

Chirped-Pulse FTMW spectrometer (WF08) L P F SS –AMP AWG 7102 DG 535 CDCD ABAB 10 MHz Ref. TDS 2040 TDS 6124C LN-AMP SPST CP-FTMW is not a FP cavity based technology!

Hexafluoropropylene Oxide — HFPO  Material sciences, :CF 2  Polymer chemistry  Simple structure  Dipole moments a-axis: D b-axis: 0.15 D c-axis: 0.40 D

Ab initio calculations & experiments  Density Functional Theory (DFT) calculation  Gaussian 03: B3LYP/ G(d,p)  Sample: HFPO – SynQuest Lab. Inc.  ~ 0.3% 1.5 atm  CP-FTMW spectrometer: 2.0 – 8.5 GHz  Average 10,000 shots in 45 min.  SS-AMP(4W) / TWTA(300W)  FP-FTMW spectrometer: 8.0 – 26 GHz

Analysis  Spectra assignments: 5 HFPO isotopologues  Plusquellic’s JB95 & Pickett SPFIT/SPCAT  Watson’s A-reduction Hamiltonian  Structural analysis  Watson’s mass dependent r m (2) structure  Kisiel’s STRFIT

DFT calc. [1], [2] [1][2] Main-HFPO 13 C 1 -HFPO 13 C 2 -HFPO 13 C 3 -HFPO 18 O-HFPO A 0 (MHz) (11) (44) (41) (41) (45) B 0 (MHz) (5) (25) (27) (23) (26) C 0 (MHz) (5) (30) (30) (27) (35) Δ J (Hz) (18)54.6(19)55.0(19)54.5(16)54.5(24) Δ JK (Hz) (86)109.5(94)107.7(91)105.4(82)96.0(98) Δ K (Hz) (15)-20(10)-19(13)-11.3(99) [3] δ J (Hz) (61)8.38(75)8.79(78)8.59 (62)8.3(10) δ K (Hz) (13)-260(19)-261(19)-251(16)-247(23) σ [4] (kHz) [4] # of lines [ 1] [ 1] The calculation was done by B3LYP/ G(d,p) method using Gaussian 03 program package. [2] [2] All calculated constants are derived from the optimized equilibrium molecular structure. [3] [3] Fixed to be the values obtained from the dominate isotopologue. [4] [4] The standard deviation of the fit using Pickett’s SPFIT suite of program. The spectroscopic constants of HFPO

Molecular skeleton structure of HFPO DFT r e struct.Exp. r m (2) struct. [1] r(CF 3 – CF) / Å (4) r(CF – CF 2 ) / Å (5) r(CF 2 – O) / Å (2)  (CF 3 –CF–CF 2 ) / º (3)  (CF–CF 2 –O) / º (2) Φ(CCC – CCO) / º (3) [1] The fluorine atoms related structural parameters are fixed to be the optimized values from the DFT calculation, B3LYP/ G(d,p).

Summary  Microwave spectra of HFPO: 2.0 – 26 GHz  CP-FTMW: effective in S & C bands (2 – 8 GHz)  a-type transitions can be observed (μ a < 0.1 Debye)  All 13 C (1.07%) isotopologues can be measured in natural abundance using CP-FTMW spectrometer!  Determined the skeleton r m (2) geometry of HFPO  DFT calc. agrees with exp. measurements

Acknowledgement  John B. Stephenson Fellowship, 2007 Appalachian College Association (ACA)  Prof. Brooks H. Pate’s group  Dr. Richard D. Suenram (NIST/UVA)  Dr. Gordon G. Brown (Coker College, SC)  Audience