Mesons in Medium at RHIC + JLab Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, USA Theory Center Seminar Jefferson Lab (Newport News, VA),
1.) Introduction: QCD Hadron and Phase Structure Electromagn. spectral function - √s ≤ 1 GeV : non-perturbative - √s ≥ 2 GeV : pertubative (“dual”) Disappearance of resonances ↔ phase structure changes: - hadron gas → Quark-Gluon Plasma - realization of transition? √s=M e + e → hadrons Im Π em (M,q; B,T) Thermal e + e emission rate from hot/dense matter ( em >> R nucleus ) Temperature? Degrees of freedom? Deconfinement? Chiral Restoration?
1.2 Intro-II: Low-Mass Dileptons at CERN-SPS CERES/NA45 [2000] m ee [GeV] strong excess around M ≈ 0.5GeV (and M > 1GeV) little excess in and region NA60 [2005]
1.) Introduction 2.) Resonances + Chiral Symmetry Spontaneous Chiral Symmetry Breaking + Chiral Partners 3.) Meson in Medium Hadronic Lagrangian + Empirical Constraints Many-Body Theory + Spectral Functions 4.) Dilepton Spectra in Heavy-Ion Collisions Thermal Emission Rates, Lattice QCD Phenomenology in URHICs 5.) Dilepton Spectra in Nuclear Photo-Production Elementary Amplitude, CLAS Phenomenology 6.) Conclusions Outline
2.1 Chiral Symmetry Breaking + Hadron Spectrum “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] Quark Level: Const. Mass Observables: Hadron Spectrum M q * ~ ‹0|qq|0› chiral breaking: |q 2 | ≤ 1 GeV 2 - Condensates fill QCD vacuum: energy gap massless Goldstone mode “chiral partners” split (½ GeV) J P =0 ± 1 ± 1/2 ± 3/2 ± (1700) N (1520) (1232) M [GeV]
spectral distributions! 2.2 Q 2 -Dependence of Chiral Breaking Axial-/Vector Mesons pQCD cont. F 2 -Structure Function ( spacelike) JLAB Data ≈ x average → Quark-Hadron Duality lower onset-Q 2 in nuclei? [Niculescu et al ’00] p d Weinberg Sum Rule(s)
1.) Introduction 2.) Resonances + Chiral Symmetry Spontaneous Chiral Symmetry Breaking + Chiral Partners 3.) Meson in Medium Hadronic Lagrangian + Empirical Constraints Many-Body Theory + Spectral Functions 4.) Dilepton Spectra in Heavy-Ion Collisions Thermal Emission Rates, Lattice QCD Phenomenology in URHICs 5.) Dilepton Spectra in Nuclear Photo-Production Elementary Amplitude, CLAS Phenomenology 6.) Conclusions Outline
3.1 -Meson in Vacuum and Hot/Dense Matter D (M,q; B,T) = [M 2 - m 2 - - B - M ] -1 [Chanfray et al, Herrmann et al, Urban et al, Weise et al, Oset et al, …] Pion Cloud > > R= , N(1520), a 1, K 1... h=N, , K … = -Hadron Scattering = + [Haglin, Friman et al, RR et al, Post et al, …] constrain effective vertices: R→ h, scattering data ( N→ N, N/A) Vacuum: chiral Lagrangian + → P-wave phase shift, el.-mag. formfactor Hadronic Matter: effective Lagrangian for interactions with heat bath In-Medium -Propagator
3.2 Scattering Processes from Spectral Function ↔ Cuts (imag. parts) of Selfenergy Diagrams: N -1 > meson-exchange scattering resonance excitation meson-exchange current N → N → → N NN →
3.3 Constraints from Nuclear Photo-Absorption -absorption cross section in-medium spectral function NANA -ex [Urban,Buballa, RR+Wambach ’98] Nucleon Nuclei melting of resonances quantitative determination of interaction vertex parameters
3.4 Spectral Function in Nuclear Matter In-med. -cloud + N→B* resonances (low-density approx.) In-med -cloud + N → N(1520) Constraints: N, A N → N PWA strong broadening + small upward mass-shift empirical constraints important quantitatively N=0N=0 N=0N=0 N =0.5 0 [Urban et al ’98] [Post et al ’02] [Cabrera et al ’02]
3.5 Spectral Function in Heavy-Ion Collisions -meson “melts” in hot /dense matter medium effects dominated by baryons B / Hot+Dense Matter [RR+Gale ’99] Hot Meson Gas [RR+Wambach ’99]
1.) Introduction 2.) Resonances + Chiral Symmetry Spontaneous Chiral Symmetry Breaking + Chiral Partners 3.) Meson in Medium Hadronic Lagrangian + Empirical Constraints Many-Body Theory + Spectral Functions 4.) Dilepton Spectra in Heavy-Ion Collisions Thermal Emission Rates, Lattice QCD Phenomenology in URHICs 5.) Dilepton Spectra in Nuclear Photo-Production Elementary Amplitude, CLAS Phenomenology 6.) Conclusions Outline
“Freeze-Out” QGP Au + Au 4.1 Strong-Interaction Matter in the Laboratory Hadron Gas NN-coll. Sources of Dilepton Emission: “primordial” (Drell-Yan) qq annihilation: NN→e + e X - e+e+ e emission from equilibrated matter (thermal radiation) - Quark-Gluon Plasma: qq → e + e , … - Hot+Dense Hadron Gas: → e + e , … - final-state hadron decays: , → e + e , D D → e + e X , … _
4.2 Thermal Dilepton Emission Rate: e+ e-e+ e- Im Π em (M,q; B,T) Im em ~ [Im D + Im D /10 + Im D /5] M ≤ 1 GeV: non-perturbative M > 1.5 GeV: perturbative Im em ~ N c ∑(e q ) 2 √s=M e+e-e+e- e+e-e+e- qqqq - ee→had / ee→ ~ Im em (M) / M 2 “Hadronic Spectrometer” (T ≤ T c ) “QGP Thermometer” (T > T c )
4.2.2 Dilepton Rates: Hadronic vs. QGP dR ee /dM 2 ~ ∫d 3 q f B (q 0 ;T) Im em Hadronic and QGP rates tend to “degenerate” toward ~T c Quark-Hadron Duality at all M ?! ( degenerate axialvector SF!) [qq→ee] - [HTL] F 2 -Structure Function p d JLAB Data [RR,Wambach et al ’99]
4.3 Lattice-QCD Dilepton Rate low-mass enhancement in lattice rate! similar to hard-thermal-loop resummed perturbation theory [Kaczmarek et al ’10] [Braaten,Pisarski+Yuan ‘90] dR ee /d 4 q 1.4T c (quenched) q=0
4.3.2 Euclidean Correlators: Lattice vs. Hadronic Euclidean Correlation fct. Hadronic Many-Body vs. Lat. [’02] Lattice [Kaczmarek et al ‘10] “Duality” of lattice (1.4 T c ) and hadronic many-body (“T c ”) rates?!
4.3.3 Back to Spectral Function corroborates approach to chiral restoration !? -Im em /(C T q 0 )
4.4 Dileptons in Heavy-Ion Collisions invariant-mass spectrum directly reflects thermal emission rate: - M<1GeV: broadening - M>1GeV: T slope ~ MeV + Spectra at CERN-SPS In-In(158AGeV) [NA60 ‘09] M [GeV] Thermal Emission Rate Evolve rates over fireball expansion: [van Hees +RR ’08]
M [GeV] Conclusions from Dilepton “Excess” Spectra thermal source (T~ MeV) M<1GeV: in-medium meson - no significant mass shift - avg. (T~150MeV) ~ MeV (T~T c ) ≈ 600 MeV → m - driven by baryons M>1GeV: radiation around T c fireball lifetime “measurement”: FB ~ (6.5±1) fm/c (semicentral In-In) [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08] approach seems to fail at RHIC
1.) Introduction 2.) Resonances + Chiral Symmetry Spontaneous Chiral Symmetry Breaking + Chiral Partners 3.) Meson in Medium Hadronic Lagrangian + Empirical Constraints Many-Body Theory + Spectral Functions 4.) Dilepton Spectra in Heavy-Ion Collisions Thermal Emission Rates, Lattice QCD Phenomenology in URHICs 5.) Dilepton Spectra in Nuclear Photo-Production Elementary Amplitude, CLAS Phenomenology 6.) Conclusions Outline
5.1 Nuclear Photoproduction: Meson in Cold Matter + A → e + e X [CLAS+GiBUU ‘08] E ≈ GeV e+ee+e extracted “in-medium” -width ≈ 220 MeV - small?!
5.2 Equilibrium Approach N (a) Production Amplitude : t-channel [Oh+Lee ‘04] + resonances ( spectr. fct.!) [Riek et al ’08, ‘10] (b) Medium Effects: propagator in cold nuclear matter - broadening much reduced with increasing 3-momentum N→ N d → e + e X Im D [1/MeV 2 ] M [GeV] + CLAS
average q ~ 2GeV average N (Fe) ~ 0.4 0 free norm: 2 =1.08 vs in-med vs. vac spectral function need low momentum cut + absolute cross section! Density at Decay Point Application to CLAS Data E ≈1.5-3 GeV, uniform production points, decay distribution with in-med
low-momentum yield small, but spectral broadening strong 3-Momentum Cuts Transparency Ratio 5.3 Predictions for Photoproduction
X.) Axialvector in Medium: Dynamical a 1 (1260) = Vacuum: a 1 resonance In Medium: in-medium + propagators broadening of - scattering amplitude [Cabrera et al. ’10]
6.) Conclusions EM spectral function ↔ excitations of QCD vacuum - ideal tool to probe hot/dense matter Effective hadronic Lagrangian + many-body theory: - strong broadening in (baryonic) medium, suppresed at large momentum (CLAS!) Dileptons in heavy-ion collisions: - spectro- /thermo-meter (CERES, NA50,NA60) - melting at “T c ” = MeV → quark-hadron duality?! hadron liquid?! Sum rules + axialvector spectral function to tighten relations to (partial) chiral restoration Future experiments at RHIC-2, FAIR +LHC; JLAB?!
4.2.4 Intermediate-Mass Dileptons: Thermometer QGP or Hadron Gas (HG) radition? vary critical temperature T c in fireball evolution partition QGP vs. HG depends on T c (spectral shape robust: dilepton rate “dual” around T c ! ) Initial temperature T i ~ MeV at CERN-SPS green: T c =190MeV red: T c =175MeV (default) blue: T c =160MeV qq → → (e.g. a 1 → ) -
4.4 Sum Rules and Order Parameters [Weinberg ’67, Das et al ’67, Kapusta+Shuryak ‘93] QCD-SRs [Hatsuda+Lee ’91, Asakawa+Ko ’92, Klingl et al ’97, Leupold et al ’98, Kämpfer et al ‘03, Ruppert et al ’05] Promising synergy of lQCD and effective models Weinberg-SRs: moments Vector Axialvector
3.2.5 EM Probes in Central Pb-Au/Pb at SPS consistency of virtual+real photons (same em ) very low-mass di-electrons ↔ (low-energy) photons [Srivastava et al ’05, Liu+RR ‘06] Di-Electrons [CERES/NA45] Photons [WA98] [Turbide et al ’03, van Hees+RR ‘07]
3.5.2 Rho, Omega + Phi Freezeout from p t -Spectra sequential freezeout → → consistent with mass spectra freezeout = fireball freezeout adjust and freezeout contribution to fit p t -spectra
3.5.3 Composition of Mass Spectra in q t -Bins high q t ≥ 1.5GeV: - medium effects reduced - non-thermal sources take over low q t high q t intermed. q t
3.5 Dimuon p t -Spectra and Slopes check fireball evolution to fit slopes of excess radiation ( ▼ ) (thermal radiation softer by Lorentz-1/ increase a ┴ = 0.085/fm → 0.1/fm (viscous effects, larger grads. in In-In …)
5.2.5 NA60 Dimuons: p t -Slopes in-medium radiation “harder” than hadrons at freezeout?! (thermal radiation softer by Lorentz-1/ smaller T ch helps (larger T fo ) non-thermal sources (DY, …)? additional transverse acceleration? hadron spectra (pions)? T ch =175MeV T ch =160MeV a ┴ =0.1/fm T ch =160MeV a ┴ =0.085/fm pions: T ch =175MeV a ┴ =0.085/fm pions: T ch =160MeV a ┴ =0.1/fm
2.2 Chiral + Resonance Scheme N + N(1535) - a 1 N(1520) - N(1900) + (1700) - (?) (1920) + SS PP SS SS SS SS PP SS SS (a 1 ) S add S-wave pion → chiral partner P-wave pion → quark spin-flip importance of baryon spectroscopy
3.1 Axial/Vector Mesons in Vacuum Introduce a 1 as gauge bosons into free + +a 1 Lagrangian EM formfactor scattering phase shift |F | 2 -propagator:
3.3 “Non-Thermal Dilepton Sources → relevant at M, q t ≥ 1.5 GeV (?) primordial qq annihilation (Drell-Yan): NN → e + e X mesons at thermal freeze-out (“blast-wave”): - extra Lorentz- factor relative to thermal radiation - q t -spectra + yield fixed by fireball model primordial (“hard”) mesons: - schematic jet-quenching with abs fit to pions - late decays: , → e + e , DD → e + e X , J/ →e + e , … _ f.o. + prim.
2.2 Electric Conductivity pion gas (chiral pert. theory) em / T ~ 0.01 for T ~ MeV [Fernandez-Fraile+Gomez-Nicola ’07] quenched lattice QCD em / T ~ 0.35 for T = (1.5-3) T c [Gupta ’04] soft-photon limit
3.2.3 NA60 Excess Spectra vs. Theory Thermal source does very well Low-mass enhancement very sensitive to medium effects Intermediate-mass: total agrees, decomposition varies [CERN Courier Nov. 2009]