Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,

Slides:



Advertisements
Similar presentations
Reference Bernhard Stojetz et al. Phys.Rev.Lett. 94, (2005)
Advertisements

Niels Bohr Institute – University of Copenhagen
Kondo Physics from a Quantum Information Perspective
Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider.
Josepson Current in Four-Terminal Superconductor/Exciton- Condensate/Superconductor System S. Peotta, M. Gibertini, F. Dolcini, F. Taddei, M. Polini, L.
14 février 2011Evaluation AERES1 Equipe de Nanophysique – Groupe 2 Membres permanents Adeline Crépieux MdC U2 Pierre Devillard MdC U1 Thibaut Jonckheere.
Quantum Coherent Nanoelectromechanics Robert Shekhter Leonid Gorelik and Mats Jonson University of Gothenburg / Heriot-Watt University / Chalmers Univ.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
1 Molecular electronics: a new challenge for O(N) methods Roi Baer and Daniel Neuhauser (UCLA) Institute of Chemistry and Lise Meitner Center for Quantum.
1 Nonequilibrium Green’s Function Approach to Thermal Transport in Nanostructures Jian-Sheng Wang National University of Singapore.
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Quantum charge fluctuation in a superconducting grain Manuel Houzet SPSMS, CEA Grenoble In collaboration with L. Glazman (University of Minnesota) D. Pesin.
Full counting statistics of incoherent multiple Andreev reflection Peter Samuelsson, Lund University, Sweden Sebastian Pilgram, ETH Zurich, Switzerland.
S. Nanot 1, B. Lassagne 1, B. Raquet 1, J.M. Broto 1 and W. Escoffier 1 J.P. Cleuziou 2, M. Monthioux 2, T. Ondarçuhu 2 R. Avrilier 3, S. Roche 3 Abstract.
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy  Nanowire growth and properties.
Application to transport phenomena  Current through an atomic metallic contact  Shot noise in an atomic contact  Current through a resonant level 
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Introduction to the Kondo Effect in Mesoscopic Systems.
Kondo Effects in Carbon Nanotubes
Theory of vibrationally inelastic electron transport through molecular bridges Martin Čížek Charles University Prague Michael Thoss, Wolfgang Domcke Technical.
Theory of the Quantum Mirage*
SQUID Based Quantum Bits James McNulty. What’s a SQUID? Superconducting Quantum Interference Device.
Lecture 4 - Coulomb blockade & SET Fulton TA and Dolan GJ, Phys. Rev. Lett. 59 (1987) 109.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Field theoretical methods in transport theory  F. Flores  A. Levy Yeyati  J.C. Cuevas.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Magnetopolaronic effects in single-molecule transistor
Dynamic response of a mesoscopic capacitor in the presence of strong electron interactions Yuji Hamamoto*, Thibaut Jonckheere, Takeo Kato*, Thierry Martin.
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
SQUIDs (Superconducting QUantum Interference Devices)
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Quantum transport theory - analyzing higher order correlation effects by symbolic computation - the development of SymGF PhD Thesis Defense Feng, Zimin.
Five-Lecture Course on the Basic Physics of Nanoelectromechanical Devices Lecture 1: Introduction to nanoelectromechanical systems (NEMS) Lecture 2: Electronics.
Nonequilibrium Green’s Function and Quantum Master Equation Approach to Transport Wang Jian-Sheng 1.
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Nonlocal quantum coherence between normal probes placed on a superconductor is predicted to occur through two microscopic processes. In crossed Andreev.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Kink escape from a potential well created by an external perturbation LENCOS, July, Monica A. Garcia Ñustes This talk is on based on a joint.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Graphene bipolar heterojunctions SD LG V BG C BG C LG V LG V SD -Density in GLs can be n or p type -Density in LGR can be n’ or p’ type We expect two Dirac.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Zoltán Scherübl BME Nanophysics Seminar - Lecture
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot Experiment: B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-H. Bae, N. Kim Theory:
Subharmonic gap Structures
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Orbitally phase coherent spintronics
Vivek Sinha (09MS 066) Amit Kumar (09 MS 086)
Superconducting Qubits
BCS THEORY BCS theory is the first microscopic theory of superconductivity since its discovery in It explains, The interaction of phonons and electrons.
Electronic structure of topological insulators and superconductors
RESONANT TUNNELING IN CARBON NANOTUBE QUANTUM DOTS
Coulomb Blockade and Single Electron Transistor
Full Current Statistics in Multiterminal Mesoscopic Conductors
Presentation transcript:

Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg, H. I. Jørgensen, K. Grove-Rasmussen, P. E. Lindelof, and A. Rossini Nano-Science Center, University of Copenhagen Phys. Rev. B 72, (2005); Phys. Rev. Lett. 96, (2006); preprint

2 Outline of the talk 1.Brief introduction into the (normal) mesoscopic/nanoscopic quantum transport –Closed regime (Coulomb blockade) –Open regime (Fabry-Perot, scattering theory) 2.Superconducting transport - concepts –Josephson current –Andreev reflections –0-π transition –Phase dynamics 3.Experiments on S-CNT-S structures –Fabry-Perot regime (Josephson transistor) –Coulomb blockade regime (0-π transition)

3 1. Introduction

4 Mesoscopic systems in 2D electron gases

5 Aharonov-Bohm ring Quantum dots formed by using several gates (artificial atoms/molecules) More mesoscopic structures

6 Nanotube Nygård, Cobden, PRL Carbon nanotubes

7 gate V bias VgVg Single (!) molecule transistors

8 Park et al. Nature 407, 57 (2000) Park et al. Nature 417, 722 (2002) Co(tpy-(CH2)5-SH)2 C 60 Examples of single molecular devices

9 Electron lifetime on the molecule is long. Transport happens by independent tunneling events on and off the molecule. CASE 1 (weak coupling): Electron lifetime on the molecule is short. Molecule acts as a scattering for the electrons. CASE 2 (infinite coupling): Two limits (at least) CASE 1.5 (intermediate coupling): Stronly correlated regime. Kondo effect for odd occupation. Screening of the localized spin by lead electrons. Generally very difficult!

10  + V g U+2  +2 V g gate V g left contact right contact ”0” ”1” ”2” -V g V sd  + V g U+2  +2 V g ”0””1””2” E ”0” =E ”1” E ”1” =E ”2” CASE 1: Coulomb blockade spectroscopy

11 V sd Current kBTkBT Degeneracy Current through a single level

12 Sapmaz et al., Phys. Rev. B 67, (2003) A particular beatiful case – spectroscopy on nanotube

13 gate V g left contact right contact V sd N electrons N-1 electrons DOS Energy width =  Distance = U Not so weak coupling Hybridization with leads

14 DOS Energy width =  U  À U  ¿ U Effectively no interactions The electron transfer happens as independent event. Current can be calculated as a simple transmission problem of independent electrons The electron transfer is correlated = Coulomb blockade Electrons strongly interact but also transmit as waves Non-interacting particle or not ? Open or closed molecule ?

15 Maximum time before energy credit runs out: Minimum time required to make the deal: Relation to uncertainty principle ¿ l i f e = ~ ¡

16 Incoming wave Outgoing wave Reflected wave CURRENT: From transmission coefficients to conductance

17 Coulomb blockade  = I ~ /e = 0.5 meV  · 0.1 meV Fabry-Perrot From Fabry-Perot to Coulomb blockade

18 2. Superconducting transport – basic concepts

19 Josephson effect Cooper pair tunneling (in equilibrium) SS I J ( Á L ¡ Á R )

20 Andreev reflection (non-interacting limit) Multiple Andreev Reflections (MARs) – seen at finite bias (subharmonic gap structure) Bound Andreev States – carry the supercurrent

21 Andreev reflection (non-interacting limit) I exc ( g ) = e ~ ¢ g 2 h ( 4 ¡ g ) · 1 ¡ g 2 4 p 4 ¡ g ( 8 ¡ g ) l og 2 + p 4 ¡ g 2 ¡ p 4 ¡ g ¸ ; g ´ G h = e 2 If  >>  we can use theory for SC quantum point contacts: J. C. Cuevas et al., PRB 54, 7366 (1996) and V. S. Shumeiko, Low Temp. Phys. 23, 181 (1997) For a 4-fold degenerate SWCNT: I c ( g ) = e ~ ¢ gs i n' max 4 ~ p 1 ¡ g 4 s i n 2 ( ' max 2 ) t an h ~ ¢ p 1 ¡ g 4 s i n 2 ( ' max 2 ) 2 k B T Supercurrent (Josephson current) Excess current I exc ´ I ¢ ( V ! 1 ) ¡ I ¢ = 0 ( V ! 1 )

22 0-π transition (Coulomb blockade limit) F k ® ( ¿ ) = ¡ D T ¿ ³ c y ¡ k ® # ( ¿ ) c y k ® " ( 0 ) ´E 0 B ( ¿ 1 ; ¿ 2 ; ¿ 3 ) = D T ¿ ³ d y # ( ¿ 1 ) d y " ( ¿ 2 ) d # ( ¿ 3 ) d " ( 0 ) ´E 0 Graphical representation of this term Current in the lowest order in Γ 2 (cotuneling)

23  junction behavior gate 0-π transition (Coulomb blockade limit)

24 Phase dynamics When the junction is put into a circuit, the superconducting phase difference φ is actually a dynamical variable, moreover quite difficult to control. In principle the junction + environment compose a complicated quantum, nonlinear, stochastic, hysteretic, etc. dynamical system → many regimes of behavior. RCSJ model: C Ä ' + _ ' r + 2 e ~ ( I J ( ' ) ¡ I B ) = 2 e ~ i n ( t ) V = ~ _ ' 2 e “First Josephson relation” Second Josephson relation

25 3. Experiments

26 Josephson transistor (Fabry-Perot regime) P. Jarillo-Herrero, J. A. van Dam, and L. P. Kowenhoven, Nature 439, 953 (2006) Measured supercurrent largely influenced by the phase dynamics (underdamped junction): I cm / I 3 = 2 c

27 Josephson transistor (Fabry-Perot regime) H. Ingerslev Jørgensen et al., PRL 96, (2006)

28 0-π transition (Coulomb blockade regime) J. A van Dam et al., Nature 442, 467 (2006) Semiconducting nanowires (InAs) in a SQUID setup – enables the direct determination of the supercurrent sign

29 0-π transition (Coulomb blockade regime) J.-P. Cleuziou, W. Wernsdorfer et al., Nature Nanotechnology 1, 53 (2006) SWCNT SQUID setup direct observation of the transition

30 0-π transition (Coulomb blockade regime) H. Ingerslev Jørgensen et al., preprint (2007) Non-SQUID measurement, designed (controlled) fluctuations, true I c

31 Conclusions Josephson transistor demonstrated both theoretically and experimentally (i.e., gate voltage control of the Josephson current) Both open and closed regimes attainable Theoretical challenges: —Microscopic determination of I J (φ) for intermediate cases —Effects of dissipation, more realistic modeling of other degrees of freedom (more levels, oscillations, etc.) —Phase dynamics for non-sinusoidal current- phase relationships