Cryogenic ion catchers using superfluid helium and noble gases Sivaji Purushothaman KVI, University of Groningen The Netherlands.

Slides:



Advertisements
Similar presentations
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
Advertisements

Boiling heat transfer of liquid nitrogen in the presence of electric fields P Wang, P L Lewin, D J Swaffield and G Chen University of Southampton, Southampton,
Ion beam Analysis Joele Mira from UWC and iThemba LABS Tinyiko Maluleke from US Supervisor: Dr. Alexander Kobzev Dr. Alexander Kobzev.
Etch Process Trends. Etch process trends Most trends are not consistent. They depend on the specific values of input parameters. At point A, pressure.
Wir schaffen Wissen – heute für morgen 5. Mai 2015PSI,5. Mai 2015PSI, Paul Scherrer Institut Polonium Evaporation Studies from Liquid Metal Spallation.
The ion trap facility SHIPTRAP at GSI Status and Perspectives Michael Block for the SHIPTRAP collaboration.
UHV and Surface Science Perspectives on the Purification of Liquid Argon for Large TPC Detectors A. L. Johnson Department of Chemistry University of Nevada,
Mass Analyzer of SuperHeavy Atoms Some recent results 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
1 Edelweiss-II status Eric Armengaud (CEA), for the Edelweiss Collaboration Axion-WIMPs training workshop, Patras, 22/06/2007.
ILE, Osaka Concept and preliminary experiment on protection of final optics in wet-wall laser fusion reactor T. Norimatsu, K. Nagai, T. Yamanaka and Y.
Chamber Clearing by Electrostatic Fields L. Bromberg ARIES Meeting UCSD January 10, 2002.
DISTRIBUTED CRYOGENIC COOLING WITH MINIATURIZED FLUID CIRCUITS Steffen Grohmann, ETT/TT RD39 Collaboration ST Workshop 2003 CERN, April 01-03, 2003.
Radioactive Ion Beam (RIB) Production at ISOLDE by the Laser Ion Source and Trap (LIST) Sven Richter for the LIST-, RILIS- and ISOLDE IS456 Collaborations.
TRImP in-flight separator, ion catcher and RFQ cooler/buncher
What is plasma? Plasma is an ionized gas comprising molecules,atoms, ions ( in their ground or excited states) electrons and photons. It is electrically.
Lee, Myeong Jae DMRC, Seoul national university
ZEPLIN II Status & ZEPLIN IV Muzaffer Atac David Cline Youngho Seo Franco Sergiampietri Hanguo Wang ULCA ZonEd Proportional scintillation in LIquid Noble.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Australia-Italy Australia 6, October 2005 LCGT project Kazuaki Kuroda LCGT Collaboration Cryogenics for LCGT.
IHEP 1.3 GHz Cryomodule and Cryogenics IHEP Cryogenic group 2nd Workshop of the IHEP 1.3 GHz SRF R&D Project Dec 2 nd, 2009.
GERMANIUM GAMMA -RAY DETECTORS BY BAYAN YOUSEF JARADAT Phys.641 Nuclear Physics 1 First Semester 2010/2011 PROF. NIDAL ERSHAIDAT.
1 Preparation for the 3 He Injection Test 11/2007 MIT/BATES D. Dutta*, H. Gao, M. Busch, Q. Ye, X. Qian, W. Zheng, X. Zhu ( Duke University) ASU, BU, Caltech,
Workshop for Underground experiments and astroparticle physics 1 Radon Environment of Underground Experiment and Detection of Radon Lee, Myeong.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Polarized Proton Solid Target for RI beam experiments M. Hatano University of Tokyo H. Sakai University of Tokyo T. Uesaka CNS, University of Tokyo S.
Ultra-low background HPGe detector at ChyeongPyung Underground Laboratory TaeYeon Kim and KIMS(Korea Invisible Mass Search) Collaboration. * Contents *
28. November 2005 Fission product yield measurements with JYFLTRAP A novel application of a Penning trap H. Penttilä, J. Äystö, V.-V. Elomaa, T. Eronen,
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD.
International Workshop on Stopping and Manipulation of Ions, Groningen, 28 March 2006 Latest developments at the IGISOL laser ion source Iain Moore University.
J. Hasegawa, S. Hirai, H. Kita, Y. Oguri, M. Ogawa RLNR, TIT
Nuclear Physics. The famous Geiger-Marsden Alpha scattering experiment (under Rutherford’s guidance) In 1909, Geiger and Marsden were studying how alpha.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
Radioactive Decay Radioactivity results from having an unstable nucleus. When these nuclei lose energy and break apart, decay occurs. Radioactive decay.
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
A systematic study of  - decay of neutron-rich Rh and Ag isotopes Sixth China Japan Joint Nuclear Physics Symposium Shanghai, May 16-20, 2006 Youbao Wang.
UKNF 12 January 2005 Target Studies J R J Bennett RAL.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
111 Antimatter. Congratulations and Thanks Ron! Plasma Fusion Center, MIT Physics of Plasmas ‘95 Plasma Study.
Noble Liquid Tracking Detectors Raphael Galea Columbia University Collaborators: B.Willis,J.Dodd, Y.Ju,M.Leltchouk…….…………………………….…Columbia University V.Radeka,P.Rehak,J.Sondericker,P.Takacs,V.Tcherniatine..………BNL.
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Giovanni Ciavola, JRA-07 ISIBHI JRA-07 Ion Sources for Intense Beams of Heavy Ions (ISIBHI) EURONS PCC Meeting, Groningen, Holland, December 2006.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the 48 Ca Am reaction CHEMICAL IDENTIFICATION of the element Db.
1 Cost Room Availability Passive Shielding Detector spheres for accelerators Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh).
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Parameters of the NF Target Proton Beam pulsed10-50 Hz pulse length1-2  s energy 2-30 GeV average power ~4 MW Target (not a stopping target) mean power.
The Tale of Two Tangles: Dynamics of "Kolmogorov" and "Vinen" turbulences in 4 He near T=0 Paul Walmsley, Steve May, Alexander Levchenko, Andrei Golov.
7.1 continued: Radioactive Decay. A brief review of last class…
Large Area Plasma Processing System (LAPPS) R. F. Fernsler, W. M. Manheimer, R. A. Meger, D. P. Murphy, D. Leonhardt, R. E. Pechacek, S. G. Walton and.
LIST status and outlook Sven Richter for the LIST-, RILIS- and Target-Collaborations 21 st of August 2013.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
Welcome to the CHARMS See – Tea Saturday, March 05, 2016 Comparison of ISOLDE yields with calculated in- target production rates Strahinja Lukić,
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
Cryogenic Summary - K. C. Wu Testing D2L102 in MAGCOOLJune, 02 Difference between D2L102 and D2L101 Operating Summary Cooldown to 100 K and 6 K Test Condition.
Diffusive Transport of 3 He in the EDM Experiment Steve Lamoreaux.
Section 5: Thin Film Deposition part 1 : sputtering and evaporation
Laser Calibration of a Liquid Argon TPC G. Sinnis J. Danielson W. Sondheim.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
ESS | Non-Invasive Beam Profile Measurements| | C. Böhme Non-Invasive Beam Profile Measurement Overview of evaluated methods.
1 cm Thick Silicon(Ge)Detectors at Liquid Helium Temperature From Surface to Volume (Neutrino Physics) C.Braggio 1,G.Bressi 2,M.Boscardin 3 G.Carugno 1,G.Galeazzi.
Final Design Cryogenic and mechanical configurations
Latest results from the superfluid-helium UCN source SUN2 at ILL
Jari Koskinen, Sami Franssila
DOE Plasma Science Center Control of Plasma Kinetics
Production of Cesium Iodide Photocathodes for
CRYOGENICS OPERATIONS 2008 Organized by CERN
Interaction of Radiation with Matter
Presentation transcript:

Cryogenic ion catchers using superfluid helium and noble gases Sivaji Purushothaman KVI, University of Groningen The Netherlands

Content Introduction Superfluid Helium Cryogenic gas catchers Off-line On-line Summary Future plans

 (mg/cm 3 )  (rel.) T (K)   1 bar He gas   1 bar He gas  liquid He  superfluid He    e  t Impurities get frozen out !!! High density at low temperature  (mg/cm 3 )  (rel.) T (K)

1-2 K liquid vapour room T vacuum Cold RIBs from superfluid helium: concept 1.stop high-energy radioactive ions in superfluid helium  snowballs   2.transport to the surface by electric fields  3.extraction across the surface into the vapour region electrodes  4.transport to a vacuum, room- temperature region trivial 3.extraction across the surface into the vapour region N. Takahashi et al.

 -decay recoil ion source ranges in LHe recoil: 0.5  m   : 500  m ranges in LHe recoil: 0.5  m   : 500  m 223 Ra source  -decay detection He gas 223 Ra: source of 219 Rn ions 1.8 ms 223 Ra 219 Rn  5-6 MeV ~ 100 keV 215 Po 211 Pb 211 Bi 207 Tl 207 Pb      4.0 s 11.4 d 36 m 2.2 m 4.8 m

How to extract snowballs at low temperature ? conflicting temperature requirements conflicting temperature requirements W.X. Huang et al., NIM B 204 (2003) 592 N. Takahashi et al., Physica B 329 (2003) 1596 W.X. Huang et al., Europhys. Lett. 63 (2003) 687 We go for low temperature

Electric-field assisted extraction 5 cm Source Bottom electrode Guiding electrodes Focusing electrode Collector foil Detector holder LHe dewar LN2 dewar 1 K pot SF He cell alpha detector electrodes foil up to 1200 V/cm no enhanced extraction

Evaporation by second sound fixing hole quartz substrate NiCr thin film (140  ) current pulse heater design SF helium cell configuration NiCr heater alpha detector Al foil -200 V electrode 520 V 223 Ra 540 V Second sound - heat wave without a pressure wave

Release of ions by evaporation 219 Rn trapped at the surface square current pulse to the second sound heater width: 50  s period: 500 ms 219 Rn released from the surface and transported to the foil if thermal motion only: 0.04 % 7.2(6) % extraction efficiency 7.2(6) % extraction efficiency few % overall efficiency few % overall efficiency 1.05K

A cryogenic gas catcher alpha detector Al foil -200 V electrode 520 V 223 Ra 540 V 1 bar at room temperature helium neon argon transport of 219 Rn remove impurities 1) ultra-clean system UHV compatible bakeable helium purification < ppb  not trivial (esp. large cells) 2) freezing the impurities impurities in noble gas ion catchers limit the performance: neutralization of ions (near or at thermal velocities) formation of molecules/adducts

Efficiencies at low temperature P. Dendooven et al., NIM A 558 (2006) 580

Rutherford scattering beam monitor Vacuum can 72 K shield 4 K shield Beam line Guiding electrodes cell Silicon detector Bottom electrode Al foil 1 K pot Ra source Plasma region 15 MeV Proton beam 223 Cryostat Rutherford Scattering beam monitor Online experimental setup (JYFL) Vacuum can 72 K shield Cryostat 4 K shield cell 1 K pot -240V -220V -350V -200V 250V Guiding electrodes Bottom electrode Silicon detector Al foil Ra source 223

On-line        Higher electric field is needed to get maximum efficiency at high beam intensities

On-line 10  35 

On-line 10  106 

@        Different behavior of efficiency curve may be due to the high mobility of electrons and low mobility of positive ions at low temperature & Re-ionization by 10  35 106  35 

Summary of the data

Recombination loss - f Ramanan, G.; Freeman, Gordon R., Journal of Chemical Physics, 93, 1990, 3120 M.Huyse et al., NIMB, 187, 2002, Pages

Efficiency vs. Recombination loss

Off-line Measurements for different pressures and temperatures

Summary Evidence for 2nd sound assisted extraction from superfluid helium Cryogenic gas catchers work High beam intensities require high electric fields

Near future plans Off-line test of second sound assisted extraction from superfluid helium On-line test of cryogenic gas catcher using radioactive ion beams Transport of ions to high vacuum, room temperature region

Collaborators Juha Äysto (JYFL, Jyväskylä) Peter Dendooven (KVI, Groningen) Kurt Gloos (University of Turku) Takahashi Noriaki (Osaka Gakuin University) Heikki Penttilä (JYFL, Jyväskylä) Kari Peräjävi (JYFL, Jyväskylä) Sami Rinta-Antila (JYFL, Jyväskylä) Perttu Ronkanen(JYFL, Jyväskylä) Antti Saastamoinen (JYFL, Jyväskylä) Tetsu Sonoda (JYFL, Jyväskylä)