Correction of Adversarial Errors in Networks Sidharth Jaggi Michael Langberg Tracey Ho Michelle Effros Submitted to ISIT 2005.

Slides:



Advertisements
Similar presentations
Another question consider a message (sequence of characters) from {a, b, c, d} encoded using the code shown what is the probability that a randomly chosen.
Advertisements

On error and erasure correction coding for networks and deadlines Tracey Ho Caltech NTU, November 2011.
Digital Fountain Codes V. S
Information and Coding Theory
Probabilistic verification Mario Szegedy, Rutgers www/cs.rutgers.edu/~szegedy/07540 Lecture 4.
On error correction for networks and deadlines Tracey Ho Caltech INC, 8/5/12.
Chapter 10 Shannon’s Theorem. Shannon’s Theorems First theorem:H(S) ≤ L n (S n )/n < H(S) + 1/n where L n is the length of a certain code. Second theorem:
Gillat Kol (IAS) joint work with Ran Raz (Weizmann + IAS) Interactive Channel Capacity.
D.J.C MacKay IEE Proceedings Communications, Vol. 152, No. 6, December 2005.
B IPARTITE I NDEX C ODING Arash Saber Tehrani Alexandros G. Dimakis Michael J. Neely Department of Electrical Engineering University of Southern California.
Information Theoretical Security and Secure Network Coding NCIS11 Ning Cai May 14, 2011 Xidian University.
Distributed Consensus with Limited Communication Data Rate Tao Li Key Laboratory of Systems & Control, AMSS, CAS, China ANU RSISE System and Control Group.
Fighting Byzantine Adversaries in Networks: Network Error-Correcting Codes Michelle Effros Michael Langberg Tracey Ho Sachin Katti Muriel Médard Dina Katabi.
OCDMA Channel Coding Progress Report
1 University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Mobile Ad Hoc Networks Network Coding and Xors in the Air 7th Week.
Threshold Phenomena and Fountain Codes
Codes for Deletion and Insertion Channels with Segmented Errors Zhenming Liu Michael Mitzenmacher Harvard University, School of Engineering and Applied.
Resilient Network Coding in the presence of Byzantine Adversaries Michelle Effros Michael Langberg Tracey Ho Sachin Katti Muriel Médard Dina Katabi Sidharth.
Network Coding and Reliable Communications Group A Multi-hop Multi-source Algebraic Watchdog Muriel Médard † Joint work with MinJi Kim †, João Barros ‡
Network Coding and Reliable Communications Group Network Coding for Multi-Resolution Multicast March 17, 2010 MinJi Kim, Daniel Lucani, Xiaomeng (Shirley)
DIGITAL COMMUNICATION Coding
1 Simple Network Codes for Instantaneous Recovery from Edge Failures in Unicast Connections Salim Yaacoub El Rouayheb, Alex Sprintson Costas Georghiades.
An Algebraic Watchdog for Wireless Network Coding MinJi Kim † Joint work with Muriel Médard †, João Barros ‡, Ralf Kötter * † Massachusetts Institute of.
FIGHTING ADVERSARIES IN NETWORKS Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel Médard Dina Katabi Peter Sanders Ludo Tolhuizen.
Network Coding and Reliable Communications Group Algebraic Network Coding Approach to Deterministic Wireless Relay Networks MinJi Kim, Muriel Médard.
Forward Error Correction Steven Marx CSC45712/04/2001.
Processing Along the Way: Forwarding vs. Coding Christina Fragouli Joint work with Emina Soljanin and Daniela Tuninetti.
Tracey Ho Sidharth Jaggi Tsinghua University Hongyi Yao California Institute of Technology Theodoros Dikaliotis California Institute of Technology Chinese.
Mario Vodisek 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Erasure Codes for Reading and Writing Mario Vodisek ( joint work.
Optimal Multicast Algorithms Sidharth Jaggi Michelle Effros Philip A. Chou Kamal Jain.
Low Complexity Algebraic Multicast Network Codes Sidharth “Sid” Jaggi Philip Chou Kamal Jain.
Ger man Aerospace Center Gothenburg, April, 2007 Coding Schemes for Crisscross Error Patterns Simon Plass, Gerd Richter, and A.J. Han Vinck.
Network Coding: Mixin’ it up Sidharth Jaggi Michelle Effros Michael Langberg Tracey Ho Philip Chou Kamal Jain Muriel MédardPeter Sanders Ludo Tolhuizen.
Noise, Information Theory, and Entropy
Channel Polarization and Polar Codes
Channel Coding Part 1: Block Coding
Information and Coding Theory Linear Block Codes. Basic definitions and some examples. Juris Viksna, 2015.
1 The edge removal problem Michael Langberg SUNY Buffalo Michelle Effros Caltech.
User Cooperation via Rateless Coding Mahyar Shirvanimoghaddam, Yonghui Li, and Branka Vucetic The University of Sydney, Australia IEEE GLOBECOM 2012 &
Threshold Phenomena and Fountain Codes Amin Shokrollahi EPFL Joint work with M. Luby, R. Karp, O. Etesami.
Resilient Network Coding in the Presence of Eavesdropping Byzantine Adversaries Michael Langberg Sidharth Jaggi Open University of Israel ISIT 2007 Tsinghua.
1 Network Coding and its Applications in Communication Networks Alex Sprintson Computer Engineering Group Department of Electrical and Computer Engineering.
CprE 545 project proposal Long.  Introduction  Random linear code  LT-code  Application  Future work.
Andrea Montanari and Ruediger Urbanke TIFR Tuesday, January 6th, 2008 Phase Transitions in Coding, Communications, and Inference.
DIGITAL COMMUNICATIONS Linear Block Codes
1 Private codes or Succinct random codes that are (almost) perfect Michael Langberg California Institute of Technology.
Channel Coding Binit Mohanty Ketan Rajawat. Recap…  Information is transmitted through channels (eg. Wires, optical fibres and even air)  Channels are.
Computer Science Division
On Coding for Real-Time Streaming under Packet Erasures Derek Leong *#, Asma Qureshi *, and Tracey Ho * * California Institute of Technology, Pasadena,
The High, the Low and the Ugly Muriel Médard. Collaborators Nadia Fawaz, Andrea Goldsmith, Minji Kim, Ivana Maric 2.
1 Lecture 7 System Models Attributes of a man-made system. Concerns in the design of a distributed system Communication channels Entropy and mutual information.
Network RS Codes for Efficient Network Adversary Localization Sidharth Jaggi Minghua Chen Hongyi Yao.
Reliable Deniable Communication: Hiding Messages in Noise The Chinese University of Hong Kong The Institute of Network Coding Pak Hou Che Mayank Bakshi.
Raptor Codes Amin Shokrollahi EPFL. BEC(p 1 ) BEC(p 2 ) BEC(p 3 ) BEC(p 4 ) BEC(p 5 ) BEC(p 6 ) Communication on Multiple Unknown Channels.
Fidelity of a Quantum ARQ Protocol Alexei Ashikhmin Bell Labs  Classical Automatic Repeat Request (ARQ) Protocol  Quantum Automatic Repeat Request (ARQ)
INFORMATION THEORY Pui-chor Wong.
RELIABLE COMMUNICATION 1 IN THE PRESENCE OFLIMITEDADVERSARIES.
Source Encoder Channel Encoder Noisy channel Source Decoder Channel Decoder Figure 1.1. A communication system: source and channel coding.
Network Coding Tomography for Network Failures
Channel Coding Theorem (The most famous in IT) Channel Capacity; Problem: finding the maximum number of distinguishable signals for n uses of a communication.
ON AVCS WITH QUADRATIC CONSTRAINTS Farzin Haddadpour Joint work with Madhi Jafari Siavoshani, Mayank Bakshi and Sidharth Jaggi Sharif University of Technology,
Network Topology Single-level Diversity Coding System (DCS) An information source is encoded by a number of encoders. There are a number of decoders, each.
Channel Coding: Part I Presentation II Irvanda Kurniadi V. ( ) Digital Communication 1.
RS – Reed Solomon Error correcting code. Error-correcting codes are clever ways of representing data so that one can recover the original information.
RELIABLE COMMUNICATION
Communication Networks: Technology & Protocols
MinJi Kim, Muriel Médard, João Barros
Amplify-and-Forward Schemes for Wireless Communications
Distributed Compression For Binary Symetric Channels
Homework #2 Due May 29 , Consider a (2,1,4) convolutional code with g(1) = 1+ D2, g(2) = 1+ D + D2 + D3 a. Draw the.
Presentation transcript:

Correction of Adversarial Errors in Networks Sidharth Jaggi Michael Langberg Tracey Ho Michelle Effros Submitted to ISIT 2005

Greater throughput Robust against random errors Aha! Network Coding!!!

? ? ?

XavierYvonne Zorba ? ? ?

Background Noisy channel models (Shannon,…)  Binary Symmetric Channel p (“Noise parameter”) C (Capacity) 01 H(p) 0.5

Background Noisy channel models (Shannon,…)  Binary Symmetric Channel  Binary Erasure Channel p (“Noise parameter”) C (Capacity) 0E 1-p 0.5

Background Adversarial channel models  “Limited-flip” adversary (Hamming,Gilbert-Varshanov,McEliece et al…)  Shared randomness, private key, computationally bounded adversary… p (“Noise parameter”) C (Capacity)

XavierYvonne ? Zorba ? ? |E| directed unit-capacity links Zorba (hidden to Xavier/Yvonne) controls |Z| links Z. p = |Z|/|E| Xavier and Yvonne share no resources (private key, randomness) Zorba computationally unbounded; Xavier and Yvonne can only perform “simple” computations. Model 1 Zorba knows protocols and already knows almost all of Xavier’s message (except Xavier’s private coin tosses)

XavierYvonne ? Zorba ? ? Model 1 – Xavier/Yvonne’s Goal Knowing |Z| but not Z, to come up with an encoding/decoding scheme that allows a maximal rate of information to be decoded correctly with high probability. “Normalized” rate (divide by number of links |E|)

p (“Noise parameter”) C (Capacity) Model 1 - Results 0.5

p (“Noise parameter”) C (Capacity) Model 1 - Results 0.5

p (“Noise parameter”) C (Capacity) Model 1 - Results 0.5 ? ? ? Probability of error = 0.5

p (“Noise parameter”) C (Capacity) Model 1 - Results 0.5

p (“Noise parameter”) C (Capacity) Model 1 - Results 0.5 Eurek a

Model 1 - Encoding |E|-|Z| |E| |E|-|Z|

Model 1 - Encoding |E|-|Z| |E| MDS Code X |E|-|Z| Block length n over finite field F q |E|-|Z| n(1-ε) x1x1 … n Vandermonde matrix T |E| |E| n(1-ε) T1T1... n Rate fudge-factor “Easy to use consistency information” nεnε Symbol from F q

Model 1 - Encoding T |E| |E| n(1-ε) T1T1... “Easy to use consistency information” nεnε

Model 1 - Encoding … T |E| … T 1... r1r1 r |E| nεnε D 11 …D 1|E| D |E|1 …D |E||E| D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) … T j riri D ij j

Model 1 - Encoding … T |E| … T 1... r1r1 r |E| nεnε D 11 …D 1|E| D |E|1 …D |E||E| D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) … T j riri D ij i

Model 1 - Transmission … T |E| … T 1... r1r1 r |E| D 11 …D 1|E| D |E|1 …D |E||E| … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ “Quick consistency check” D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) ? … T j ’ ri’ri’D ij ’

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ “Quick consistency check” D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) ? … T j ’ ri’ri’D ij ’ D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε) ?

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ Edge i consistent with edge j D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε) Consistency graph

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ Edge i consistent with edge j D ij ’=T j (1)’.1+T j (2)’.r i ’+…+ T j (n(1- ε))’.r i ’ n(1- ε) D ji ’=T i (1)’.1+T i (2)’.r j ’+…+ T i (n(1- ε))’.r j ’ n(1- ε) Consistency graph (Self-loops… not important) T r,D

Model 1 - Decoding … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ T r,D Consistency graph Detection – select vertices connected to at least |E|/2 other vertices in the consistency graph. Decode using T i s on corresponding edges.

Model 1 - Proof … T |E| ’ … T 1 ’... r1’r1’ r |E| ’ D 11 ’…D 1|E| ’ D |E|1 ’…D |E||E| ’ T r,D Consistency graph D ij =T j (1)’.1+T j (2)’.r i +…+ T j (n(1- ε))’.r i n(1- ε) D ij =T j (1).1+T j (2).r i +…+ T j (n(1- ε)).r i n(1- ε) ∑ k (T j (k)-T j (k)’).r i k =0 Polynomial in r i of degree n over F q, value of r i unknown to Zorba Probability of error < n/q<<1

Variations - Feedback C p 0 1 1

Variations – Know thy enemy C p C p 0 1 1

Variations – Random Noise C p 0 CNCN 1 SEPARATIONSEPARATION

? ? ? Model 2 - Multicast

p = |Z|/h C (Normalized by h) Model 2 - Results 0.5 h Z S R1R1 R |T|

p = |Z|/h C (Normalized by h) Model 2 - Results 0.5 R1R1 R |T| S

Model 2 – Sketch of Proof R1R1 R |T| S S’ |Z| S’ 2 S’ 1 Lemma 1: There exists an easy random design of network codes such that for any Z of size < h/2, if Z is known, each decoder can decode. Lemma 2: Using similar consistency check arguments as in Model 1, Z can be detected. Easy Hard

THE ENDTHE END