Mapping Estimation with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill.

Slides:



Advertisements
Similar presentations
Theresa Valentine US Forest Service Corvallis Forest Science Lab
Advertisements

SL-10 Laboratory Hot Tack / Seal Tester TMI Group of Companies TMI Group of Companies.
A GENERALIZED KOLMOGOROV-SMIRNOV STATISTIC FOR DETRITAL ZIRCON ANALYSIS OF MODERN RIVERS Oscar M. Lovera Department of Earth & Space Sciences, UCLA
Mrs. Navickas Algebraically: 1 Solve for y, if necessary. If equation is given equal to zero or a y is not present, rewrite in descending powers of x.
TileMill Quickly and Easily Design Maps for the Web Shaky Sherpa Matt Berg Modi Research Group The Earth Institute. Columbia University.
Climate Predictability Tool (CPT)
Using GIS to Analyze Movement of Tiger Sharks. Shark Tags SPOT PAT.
A Short Introduction to Curve Fitting and Regression by Brad Morantz
Histograms Capital Credit Union Issue: Analyze credit card balances for Capital Credit Union customers using a frequency distribution and histogram. Objective:
More Raster and Surface Analysis in Spatial Analyst
T T07-01 Sample Size Effect – Normal Distribution Purpose Allows the analyst to analyze the effect that sample size has on a sampling distribution.
Raster Analysis Raster math Topography: Slope, aspect, contours Reclassify Raster / Vector Conversions Statistics: min, max, mean, std. dev. –Local, Neighborhood,
19 th Advanced Summer School in Regional Science Overview and more advanced directions with ArcGIS.
Marine GIS Applications using ArcGIS Global Classroom training course Marine GIS Applications using ArcGIS Global Classroom training course By T.Hemasundar.
ESRM 250 & CFR 520: Introduction to GIS © Phil Hurvitz, KEEP THIS TEXT BOX this slide includes some ESRI fonts. when you save this presentation,
Day 1-3. Variable Selection and GIS Processing 1.Discuss V mapping goals, targeted system (what is vulnerable?), framework 2.Choose data layers (criteria:
Habitat Analysis in ArcGIS Use of Spatial Analysis to characterize used resources Thomas Bonnot
456/556 Introduction to Operations Research Optimization with the Excel 2007 Solver.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Chapter 2.
Chapter 2 Querying a Database MICROSOFT ACCESS 2010.
Efficient Model Selection for Support Vector Machines
First Screen : First window form will always remain open, for the user to select menu options. 1.
Range, Variance, and Standard Deviation in SPSS. Get the Frequency first! Step 1. Frequency Distribution  After reviewing the data  Start with the “Analyze”
Climate Predictability Tool (CPT) Ousmane Ndiaye and Simon J. Mason International Research Institute for Climate and Society The Earth.
Monte Carlo Simulation CWR 6536 Stochastic Subsurface Hydrology.
Ensure that the Field Day Call Sign is correct.
Normal Distributions Z Transformations Central Limit Theorem Standard Normal Distribution Z Distribution Table Confidence Intervals Levels of Significance.
Remote Sensing Supervised Image Classification. Supervised Image Classification ► An image classification procedure that requires interaction with the.
Guide to Using Excel For Basic Statistical Applications To Accompany Business Statistics: A Decision Making Approach, 6th Ed. Chapter 3: Describing Data.
Using Climatic data in Diva GIS Franck Theeten, Royal Museum for central Africa Cabin training 2013.
Spatio-Temporal Surface Vector Wind Retrieval Error Models Ralph F. Milliff NWRA/CoRA Lucrezia Ricciardulli Remote Sensing Systems Deborah K. Smith Remote.
Probability & Statistics Sections 2.3, 2.4. A. The mean is very low. B. The data values are all very close in value. C. The data values must all be the.
1 Tutorial 2 GE 5 Tutorial 2  rules of engagement no computer or no power → no lesson no computer or no power → no lesson no SPSS → no lesson no SPSS.
Fundamentals of GIS Lecture Materials by Austin Troy except where noted © 2008 Lecture 13: Introduction to Raster Spatial Analysis Using GIS-- By.
Managing and Curating Data Chapter 8. Introduction Data organization Data management Data curation Raw data is required to repeat a scientific study Any.
Fuzzy Logic Toolbox in MATLAB Praktikum 10. example  We want to buid FIS Mamdani, with this rules :  1. If the service is poor or the food is rancid,
Standard view – default to week tab – all ok! Please make Price with an upper case P When you click on the month tab, the average is not correct – it should.
SP5 - Neuroinformatics SynapsesSA Tutorial Computational Intelligence Group Technical University of Madrid.
Probability = Relative Frequency. Typical Distribution for a Discrete Variable.
Advanced GIS Using ESRI ArcGIS 9.3 Spatial Analyst 2.
Matlab Screen  Command Window  type commands  Current Directory  View folders and m-files  Workspace  View program variables  Double click on a.
Concepts and Applications of Kriging
Processing Lab 2 – Geometry Bryce Hutchinson Objectives: Add a dictionary Gain a better understanding of header issues Display geometry correctly Visualize.
Esri UC 2014 | Technical Workshop | Concepts and Applications of Kriging Eric Krause Konstantin Krivoruchko.
Esri UC2013. Technical Workshop. Technical Workshop 2013 Esri International User Conference July 8–12, 2013 | San Diego, California Concepts and Applications.
Advanced Tutorial on : Global offset and residual covariance ENVR 468 Prahlad Jat and Marc Serre.
How Good is a Model? How much information does AIC give us? –Model 1: 3124 –Model 2: 2932 –Model 3: 2968 –Model 4: 3204 –Model 5: 5436.
CFR 250/590 Introduction to GIS, Autumn 1999 Raster Analysis I © Phil Hurvitz, raster1.ppt 1  Overview Grid themes Setting grid theme and analysis.
Terrence E. Zavecz Weir Temporal Response New TEA Systems Software Presentation from new Weir Temporal.
2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Aihua Li Yanchen Bo
Remcom Inc. 315 S. Allen St., Suite 416  State College, PA  USA Tel:  Fax:   ©
Ex St 801 Statistical Methods Inference about a Single Population Mean (CI)
Statistical Fundamentals: Using Microsoft Excel for Univariate and Bivariate Analysis Alfred P. Rovai Histograms PowerPoint Prepared by Alfred P. Rovai.
Probability and Statistics 12/11/2015. Statistics Review/ Excel: Objectives Be able to find the mean, median, mode and standard deviation for a set of.
A Binary Linear Programming Formulation of the Graph Edit Distance Presented by Shihao Ji Duke University Machine Learning Group July 17, 2006 Authors:
William Perry U.S. Geological Survey Western Ecological Research Center Geography 375 Final Project May 22, 2013.
Modeling Space/Time Variability with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill.
Starting with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill.
1 Berger Jean-Baptiste
Histograms and Distributions Experiment: Do athletes have faster reflexes than non-athletes? Questions: - You go out and 1st collect the reaction time.
Statistics Descriptive Statistics. Statistics Introduction Descriptive Statistics Collections, organizations, summary and presentation of data Inferential.
Statistical Estimation
Mapping Estimation with BMEGUI
Modeling Space/Time Variability with BMEGUI
Inferring Population Parameters
Topic 5: Exploring Quantitative data
Concepts and Applications of Kriging
Hippocampal “Time Cells”: Time versus Path Integration
Probability and Statistics for Engineers
Presentation transcript:

Mapping Estimation with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill

Agenda ► Introduction ► Analysis Using Soft Data ► BME Estimation ► Interaction with ArcGIS

Introduction

Temporal GIS analysis process Read Data File Check Data Distribution Exploratory Data Analysis Mean Trend Analysis Covariance Analysis BME Analysis Data Field Screen Data Distribution Screen Exploratory Data Analysis Screen Mean Trend Analysis Screen Space/Time Covariance Analysis Screen BME Estimation Screen

► Time series of BME mean estimation ► Map of BME mean estimation ► Map of BME error variance

Analysis Using Soft Data

Data File with Soft Data ► Use five data columns -Data Type - Value1 - Value2 - Value3 - Value4 ► Data Type field  Specify data types (Hard/Uniform/Gaussian/ Triangular /Truncated Gaussian) ► Value1, Value2, Value3, and Value4 fields  Soft data parameters

Data Types ► Hard Data  Data Type: 0  Value1&2 Fields: Data Value ► Soft Data (Uniform)  Data Type: 1  Value1 Field: Lower Bound  Value2 Field: Upper Bound  Value3 & 4 Field: Dummy ► Soft Data (Gaussian)  Data Type: 2  Value1 Field: Mean  Value2 Field: Standard Deviation  Value3 & 4 Fields: Dummy

Data Types ► Soft Data (Triangular)  Data Type: 1  Value1 Field: Lower Bound  Value2 Field: Upper Bound  Value3 Field: Mode  Value4 Field: Dummy ► Soft Data (Trunc. Gaussian)  Data Type: 4  Value1 Field: Mean  Value2 Field: Standard Deviation  Value3 Field: Lower Trunc.Value  Value4 Field: Upper Trunc. value

Data File Example Data Type: 1 (Uniform) Lower Bound: 24.5 Upper Bound: Data Type: 2 (Gaussian) Mean: 18.1 Standard Dev: 38.01

Data File Example

Use Data Type ► To use soft data, check “Use DataType” ► Set “Data Type”, “Value1 Field”, and “Value2 Field”

Hardened Data ► Histogram/Basic statistics ► Soft data is “hardened”  Uniform – Mid-point  Gaussian – Mean value  Std. formulas for others ► “Hardened” values are used in  Histogram  Explanatory data analysis  Mean trend estimation  Experimental covariance calculation

Exploratory Data Analysis ► “Hardened” data is used ► “Temporal Evolution” tab  Hard data: Blue circle  Soft data: red triangle Soft Data Hard Data

BME Estimation

BME Estimation Screen ► Map of BME mean estimation ► Map of BME error variance ► Time series of BME mean estimation

Spatial/Temporal estimation ► Spatial/Temporal Distribution Tabs  BME estimation map at specific time  BME estimation time series at specific station ► Each tab contains sub-tab displaying the list of plots

BME Estimation Parameters ► Spatial Estimation (Map)  BME Parameters  Estimation Grid  Display Grid ► Temporal Estimation (Time Series)  BME Parameters  Estimation Parameters  Display Parameter

BME Parameters ► Five parameters for BME estimation  Maximum Spatial Distance  Maximum Temporal Distance  Space/Time Metric  Max. Number of Data Point  Order ► BMEGUI calculates default parameters based on the covariance model

Parameters for Spatial Estimation ► Estimation Grid  Estimation Time  Number of estimation point (X and Y)  Area of estimation grid  Include Data Points/Voronoi Points ► Display Grid  Number of display point (X and Y)

Estimation Grid Data PointsEstimation GridVolonoi Points

Display Grid Estimation Points Display Grid

BME Spatial Estimation ► Input parameters, then click “Estimate” button BME parameters Estimation Grid Display Grid “Estimate” button

Maps of BME Mean Estimate and BME Error Variance ► Two new tabs  Plot ID: xxxx(Mean)  Plot ID: xxxx(Error) ► New entry in the list (Plot ID, EstimationTime)

Maps of BME Mean Estimate and BME Error Variance

Close Map Tabs ► Select the tab you want to close ► Click “Close Tab” button

Redraw Maps ► Select the plot from the list ► Click “Show” button

Remove Maps ► Select the plot from the list ► Click “Delete” button

Parameters for Temporal Estimation ► Estimation Parameters  Station ID  Estimation Period ► Display Parameter  Scaling Factor

BME Temporal Estimation ► Input parameters, then click “Estimate” button BME parameters Estimation Parameters Display Parameter “Estimate” button

Time Series of BME Mean Estimate ► One new tab  Plot ID: xxxx ► New entry in the list (Plot ID, Station ID)

Time Series of BME Mean Estimate ► Solid line: BME Mean Estimate ► Dotted line: Upper/Lower Bound (67% CI) ► Data Points (Hard/Uniform/Gaussian)

Scale Factor ► Change the scale of Gaussian type soft data to adjust the size on the plot Scale Factor = 0.1 Scale Factor = 1.0

Interaction with ArcGIS

► Point Layer File  Exploratory Data Analysis (Spatial Distribution)  Mean Trend Analysis (Raw/Smoothed Mean Trend)  BME Mean/Error Estimation (Estimation Grid) ► Raster File (ArcASCII)  BME Mean Estimation  BME Error Estimation ► All files will be created in “Workspace”

Create Point Layer

Create Point Layer / Raster 1. Select Plot 2. Plot Button

ArcGIS Files ► Exploratory Analysis (Spatial Distribution)  Vector data file (.csv) ► Mean Trend  Vector data file (.csv) ► BME Estimation  Vector data file (.csv): Estimation Point  ArcASCII : BME Mean Raster  ArcASCII : BME Error Variance Raster