Holt McDougal Algebra 2 1-2 Introduction to Parent Functions 1-2 Introduction to Parent Functions Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson.

Slides:



Advertisements
Similar presentations
Using Transformations to Graph Quadratic Functions 5-1
Advertisements

Using Transformations to Graph Quadratic Functions 5-1
Introduction to Parent Functions
Parent Function Transformation Students will be able to find determine the parent function or the transformed function given a function or graph.
Teaching note: after Bell Ringer Start with video: Lesson 1-2, part 1 Lesson Tutorial Video (blue); -tell students when watching video: just listen, we.
Warm Up Use the graph for Problems 1–2.
Exponential Functions
8-4 Transforming Quadratic Functions Warm Up Lesson Presentation
Objective Transform polynomial functions..
Exponential Functions
Introduction to Parent Functions
In Chapters 2 and 3, you studied linear functions of the form f(x) = mx + b. A quadratic function is a function that can be written in the form of f(x)
Radical Functions Warm Up Lesson Presentation Lesson Quiz
Warm Up For each translation of the point (–2, 5), give the coordinates of the translated point units down (–2, –1) 2. 3 units right (1, 5) For each.
Introduction to Conic Sections
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Holt McDougal Algebra 1 27 Exponential Functions Warm Up Simplify each expression. Round to the nearest whole number if necessary (3)
Transform quadratic functions.
Radical Functions 8-7 Warm Up Lesson Presentation Lesson Quiz
Warm Up Identify the domain and range of each function.
CHAPTER Solving radicals.
Chapter 1 - Foundations for Functions
Objectives Graph radical functions and inequalities.
Holt McDougal Algebra Exponential Functions 9-2 Exponential Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
Absolute–Value Functions
Chapter 1 -Foundations for Functions
To remember the difference between vertical and horizontal translations, think: “Add to y, go high.” “Add to x, go left.” Helpful Hint.
Warm Up For each quadratic function, find the axis of symmetry and vertex, and state whether the function opens upward or downward. 1. y = x y.
Foundations for Functions Chapter Exploring Functions Terms you need to know – Transformation, Translation, Reflection, Stretch, and Compression.
Similar to the way that numbers are classified into sets based on common characteristics, functions can be classified into families of functions. The parent.
M3U6D1 Warm Up Identify the domain and range of each function. D: R ; R:{y|y ≥2} 1. f(x) = x D: R ; R: R 2. f(x) = 3x 3 Use the description to write.
Holt McDougal Algebra Using Transformations to Graph Quadratic Functions Warm Up For each translation of the point (–2, 5), give the coordinates.
9-4 Transforming Quadratic Functions Warm Up Lesson Presentation
How does each function compare to its parent function?
Warm Up Give the coordinates of each transformation of (2, –3). 4. reflection across the y-axis (–2, –3) 5. f(x) = 3(x + 5) – 1 6. f(x) = x 2 + 4x Evaluate.
Warm Up Identify the domain and range of each function.
Holt McDougal Algebra 2 Radical Functions Graph radical functions and inequalities. Transform radical functions by changing parameters. Objectives.
Objectives Transform quadratic functions.
Holt McDougal Algebra 2 Rational Functions Graph rational functions. Transform rational functions by changing parameters. Objectives.
Holt Algebra Linear, Quadratic, and Exponential Models Warm Up Find the slope and y-intercept of the line that passes through (4, 20) and (20, 24).
Exponential Functions
Introduction to Parent Functions
Warm Up For each translation of the point (–2, 5), give the coordinates of the translated point units down 2. 3 units right For each function, evaluate.
Introduction to Parent Functions
13 Algebra 1 NOTES Unit 13.
Using Transformations to Graph Quadratic Functions 5-1
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Exponential Functions
6-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Exponential Functions
Introduction to Parent Functions
4-2 Using Intercepts Warm Up Lesson Presentation Lesson Quiz
Exploring Transformations
Objectives Transform quadratic functions.
3-8 Transforming Polynomial Functions Warm Up Lesson Presentation
Introduction to Conic Sections
Introduction to Parent Functions
Objectives Identify parent functions from graphs and equations.
Parent Functions.
Parent Functions.
Transforming Linear Functions
Introduction to Parent Functions
Introduction to Parent Functions
Objectives Identify parent functions from graphs and equations.
Exponential Functions
Exponential Functions
Exponential Functions
Introduction to Parent Functions
Presentation transcript:

Holt McDougal Algebra Introduction to Parent Functions 1-2 Introduction to Parent Functions Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Algebra 2

1-2 Introduction to Parent Functions Warm Up 1. For the power 3 5, identify the exponent and the base. Evaluate f(9) when f(x)=2x + 21 exponent: 5; base: 3

Holt McDougal Algebra Introduction to Parent Functions Identify parent functions from graphs and equations. Use parent functions to model real- world data and make estimates for unknown values. Objectives

Holt McDougal Algebra Introduction to Parent Functions Similar to the way that numbers are classified into sets based on common characteristics, functions can be classified into families of functions. The parent function is the simplest function with the defining characteristics of the family. Functions in the same family are transformations of their parent function.

Holt McDougal Algebra Introduction to Parent Functions Parent Functions

Holt McDougal Algebra Introduction to Parent Functions To make graphs appear accurate on a graphing calculator, use the standard square window. Press ZOOM, choose 6:ZStandard, press again, and choose 5:ZSquare. Helpful Hint ZOOM

Holt McDougal Algebra Introduction to Parent Functions Identify the parent function for g from its function rule. Then graph g on your calculator and describe what transformation of the parent function it represents. Example 1A: Identifying Transformations of Parent Functions g(x) = x – 3 Graph Y 1 = x – 3 on the graphing calculator. The function g(x) = x – 3 intersects the y-axis at the point (0, –3). x has a power of 1.g(x) = x – 3 is linear So g(x) = x – 3 represents a vertical translation of the linear parent function 3 units down. The linear parent function ƒ(x) = x intersects the y-axis at the point (0, 0).

Holt McDougal Algebra Introduction to Parent Functions Identify the parent function for g from its function rule. Then graph on your calculator and describe what transformation of the parent function it represents. Example 1B: Identifying Transformations of Parent Functions g(x) = x Graph Y 1 = x on a graphing calculator. The function g(x) = x intersects the y-axis at the point (0, 5). x has a power of 2. g(x) = x is quadratic. So g(x) = x represents a vertical translation of the quadratic parent function 5 units up. The quadratic parent function ƒ(x) = x intersects the y-axis at the point (0, 0).

Holt McDougal Algebra Introduction to Parent Functions Check It Out! Example 1a g(x) = x g(x) = x is cubic. The cubic parent function ƒ(x) = x 3 intersects the y-axis at the point (0, 0). Graph Y 1 = x on a graphing calculator. The function g(x) = x intersects the y-axis at the point (0, 2). So g(x) = x represents a vertical translation of the quadratic parent function 2 units up. x has a power of 3. Identify the parent function for g from its function rule. Then graph on your calculator and describe what transformation of the parent function it represents.

Holt McDougal Algebra Introduction to Parent Functions It is often necessary to work with a set of data points like the ones represented by the table below. With only the information in the table, it is impossible to know the exact behavior of the data between and beyond the given points. However, a working knowledge of the parent functions can allow you to sketch a curve to approximate those values not found in the table. x–4–2024 y82028

Holt McDougal Algebra Introduction to Parent Functions Graph the data from this set of ordered pairs. Describe the parent function and the transformation that best approximates the data set. Example 2: Identifying Parent Functions to Model Data Sets {(–2, 12), (–1, 3), (0, 0), (1, 3), (2, 12)} x–2–1012 y12303 The graph of the data points resembles the shape of the quadratic parent function ƒ(x) = x 2. The quadratic parent function passes through the points (1, 1) and (2, 4). The data set contains the points (1, 1) = (1, 3(1)) and (2, 4) = (2, 3(4)). The data set seems to represent a vertical stretch of the quadratic parent function by a factor of 3.

Holt McDougal Algebra Introduction to Parent Functions Check It Out! Example 2 Graph the data from the table. Describe the parent function and the transformation that best approximates the data set. x–4–2024 y–12–60612      The graph of the data points resembles the shape of the linear parent function ƒ(x) = x. The linear parent function passes through the points (2, 2) and (4, 4). The data set contains the points (2, 2) = (2, 3(2)) and (4, 4) = (4, 3(4)). The data set seems to represent a vertical stretch of the linear function by a factor of 3.

Holt McDougal Algebra Introduction to Parent Functions Remember that any parent function you use to approximate a set of data should never be considered exact. However, these function approximations are often useful for estimating unknown values. Consider the two data points (0, 0) and (0, 1). If you plot them on a coordinate plane you might very well think that they are part of a linear function. In fact they belong to each of the parent functions below.

Holt McDougal Algebra Introduction to Parent Functions Graph the relationship from year to sales in millions of dollars and identify which parent function best describes it. Then use the graph to estimate when cumulative sales reached $10 million. Example 3: Application Sales (million $)Year Cumulative Sales Step 1 Graph the relation. Graph the points given in the table. Draw a smooth curve through them to help you see the shape.

Holt McDougal Algebra Introduction to Parent Functions Example 3 Continued The curve indicates that sales will reach the $10 million mark after about 4.5 years. Step 2 Identify the parent function. The graph of the data set resembles the shape of the quadratic parent function f(x) = x 2. Step 3 Estimate when cumulative sales reached $10 million.