Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Detector description for fast simulation as used by the Vienna Fast Simulation.

Slides:



Advertisements
Similar presentations
LDC strip angle optimization SiLC Genf, Sept. 10, 2007M. Regler, M. Valentan, W. Mitaroff Optimization of the strip angles of the LDC endcaps using the.
Advertisements

Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Background effect to Vertex Detector and Impact parameter resolution T. Fujikawa(Tohoku Univ.) Feb LC Detector Meeting.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
The Intermediate Silicon Layers detector OUTLINE ISL inside CDFII Why the ISL? Conceptual Design Ladders and Spaceframe Rasnik Online Alignment System.
LiC Detector Toy CLIC-ILC Detector R&D, Geneva, 25 July 2008 W. Mitaroff, HEPHY Vienna LiC Detector Toy Vienna fast simulation and track fit tool for flexible.
LiC Detector Toy 2.0 LCWS08 and ILC08, November 16-20, 2008 University of Illinois at Chicago W. Mitaroff, HEPHY Vienna, Austria, EU LiC Detector Toy 2.0.
Analytical study of multiple scattering SiLC, Geneva, 2 July 2008 M. Regler, M. ValentanHEPHY – OEAW - Vienna 1 A detector independent analytical study.
The LiC Detector Toy 4 th SiLC Meeting Barcelona, 18 – 20 December 2006 The LiC Detector Toy A mini simulation and track fit program tool for fast and.
LDCPrime optimization studies ILC/ECFA Warsaw, Poland, 9 – 13 June, 2008 M. Valentan for the Vienna ILC group New results from LDCPrime optimization studies.
Charged Particle Tracker for a RHIC/EIC joint detector Detector layouts based on EIC and NLC Physics drivers Silicon detector technologies Simulations.
1 G4MICE studies of PID transverse acceptance MICE video conference Rikard Sandström.
Pair backgrounds for different crossing angles Machine-Detector Interface at the ILC SLAC 6th January 2005 Karsten Büßer.
The SVT in STAR The final device…. … and all its connections … and all its connections.
Striplet option of Super Belle Silicon Vertex Detector Talk at Joint Super B factory workshop, Honolulu 20 April 2005 T.Tsuboyama.
“GLD” Detector Concept Study 21. Mar. Y. Sugimoto KEK.
Forward Tracking Report of the Vienna iLCsoft Group Winfried A. Mitaroff “Discussion document” at the 5 th ILD Workshop and SiLC Meeting LAL Orsay / APC.
LiC Detector Toy ECFA-ILC WorkshopValencia, November 2006 The LiC Detector Toy A mini simulation and track fit program tool for fast and flexible detector.
The LiC Detector Toy M. Valentan, M. Regler, R. Frühwirth Austrian Academy of Sciences Institute of High Energy Physics, Vienna InputSimulation ReconstructionOutput.
David Attié Club ‘ILC Physics Case’ CEA Saclay June 23, 2013 ILD & SiD concepts and R&D.
The LiC Detector Toy (LDT) Tracking detector optimization with fast simulation VERTEX 2011, Rust M. Valentan, R. Frühwirth, M. Regler, M. Mitaroff.
Forward Tracking I – Ruminations by the Vienna ILDsoft Group R. Frühwirth, W. Mitaroff, M. Valentan ILD Software and Integration Workshop DESY Hamburg,
Jeroen van Hunen The LHCb Tracking System. May 22, 2006 Frontier Detectors for Frontier Physics, Elba, Jeroen van Huenen 2 The LHCb Experiment LHCb.
1 Tracking Reconstruction Norman A. Graf SLAC July 19, 2006.
MdcPatRec Tracking Status Zhang Yao, Zhang Xueyao Shandong University.
Track Reconstruction: the trf & ftf toolkits Norman Graf (SLAC) ILD Software Meeting, DESY July 6, 2010.
Workshop on B/Tau Physics, Helsinki V. Karim ä ki, HIP 1 Software Alignment of the CMS Tracker V. Karimäki / HIP V. Karimäki / HIP Workshop.
Forward Tracking Plans by the Vienna iLCsoft Group Winfried A. Mitaroff AIDA Kick-off Meeting WP February 2011.
Silicon Tracking Systems in Mokka Framework Valeri Saveliev, Obninsk State University.
Summary of Simulation and Reconstruction Shaomin CHEN (Tsinghua University)  Framework and toolkit  Application in ILC detector design Jupiter/Satellites,
International Workshop on Linear Colliders, Geneve Muon reconstruction and identification in the ILD detector N. D’Ascenzo, V.Saveliev.
Impact parameter resolution study for ILC detector Tomoaki Fujikawa (Tohoku university) ACFA Workshop in Taipei Nov
Operation of the CMS Tracker at the Large Hadron Collider
Forward Tracking at ILD (ideas and questions by the Vienna Group) Winfried A. Mitaroff ILD Software Web Meeting 2 February 2011.
RAVE – a detector-independent vertex reconstruction toolkit W. Waltenberger, F. Moser, W. Mitaroff Austrian Academy of Sciences Institute of High Energy.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
Vienna Fast Simulation LDT Munich, Germany, 17 March 2008 M. Regler, M. Valentan Demonstration and optimization studies by the Vienna Fast Simulation Tool.
Si Tracking Software ILD Software Meeting, 27 January 2010 Ecole Polytechnique, Palaiseau, France Winfried A. Mitaroff HEPHY Vienna, Austria Si Tracking.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Tracking, PID and primary vertex reconstruction in the ITS Elisabetta Crescio-INFN Torino.
Momentum resolution study of LDC 6 th SiLC meeting, Torino, Dec M. Regler, M. Valentan Interplay of TPC and SET: influence on the momentum.
New LDC optimization studies... ILD Workshop, DESY-Zeuthen, 14–16 Jan M. Regler, M. Valentan presented by W. Mitaroff New LDC optimization studies.
Status of BESIII Event Reconstruction System Zepu Mao IHEP BESIII Annual Meeting 2005/05/29.
May 31th, 2007 LCWS C. Gatto 1 Tracking Studies in the 4 th Concept On behalf of 4th Concept Software Group D. Barbareschi V. Di Benedetto E. Cavallo.
Impact parameter resolutions for ILC detector Tomoaki Fujikawa (Tohoku university) ACFA Workshop in Taipei Nov
“Huge” Detector Concept 3 Sep 2004 ECFA LC Durham Satoru Yamashita ICEPP, University of Tokyo On behalf of many colleagues Towards our common.
Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2.
Track Reconstruction: the trf toolkit Norman Graf (SLAC) ILC-ACFA Meeting, Beijing February 6, 2007.
8 April 2000Karel Safarik: Tracking in ALICE1 Tracking in ALICE  OUTLOOK: Requirements History Tracking methods Track finding Tracking efficiency Momentum.
Forward Tracking in the ILD Detector. ILC the goal Standalone track search for the FTDs (Forward Tracking Disks)
Plans to study the Readout design in the forward region June 12 th 2007 Hans Wenzel  Currently: one big sensitive silicon disks: we record the Geant 4.
Vienna Fast Simulation LDT Munich, Germany, 17 March 2008 M. Regler, M. Valentan Detector description for fast simulation as used by the Vienna Fast Simulation.
12/20/2006ILC-Sousei Annual KEK1 Particle Flow Algorithm for Full Simulation Study ILC-Sousei Annual KEK Dec. 20 th -22 nd, 2006 Tamaki.
8/12/2010Dominik Dannheim, Lucie Linssen1 Conceptual layout drawings of the CLIC vertex detector and First engineering studies of a pixel access/insertion.
Forward Tracking at ILD Ruminations by the Vienna Group Winfried A. Mitaroff ECFA-ILC-CLIC Joint IWLC 2010 Geneva, Oct
LiC Detector Toy Liverpool SiLC MeetingM. Regler, M. Valentan, R. FrühwirthLiverpool SiLC MeetingM. Regler, M. Valentan, R. Frühwirth The LiC Detector.
SiD Tracking in the LOI and Future Plans Richard Partridge SLAC ALCPG 2009.
Eunil Won/Korea U1 A study of configuration for silicon based Intermediate Trackers (IT) July Eunil Won Korea University.
Object-Oriented Track Reconstruction in the PHENIX Detector at RHIC Outline The PHENIX Detector Tracking in PHENIX Overview Algorithms Object-Oriented.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
CMOS Pixels Sensor Simulation Preliminary Results and Plans M. Battaglia UC Berkeley and LBNL Thanks to A. Raspereza, D. Contarato, F. Gaede, A. Besson,
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
Mitglied der Helmholtz-Gemeinschaft Hit Reconstruction for the Luminosity Monitor March 3 rd 2009 | T. Randriamalala, J. Ritman and T. Stockmanns.
Track Reconstruction: the ftf and trf toolkits Norman Graf (SLAC) Common Software Working Meeting CERN, January 31, 2013.
LDC behavior at θ ≤ 20° ALCPG '07, Fermilab, Oct M. Regler, M. Valentan presented by W. Mitaroff LDC behavior of ∆(1/p t ) at polar angle θ.
Tracking detectors/2 F.Riggi.
ITEP /4/2010 – II Panda Russia Meeting – Maria Pia Bussa
5% The CMS all silicon tracker simulation
Silicon Tracking with GENFIT
Sheraton Waikiki Hotel
Presentation transcript:

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Detector description for fast simulation as used by the Vienna Fast Simulation Tool for Charged Tracks (“LiC Detector Toy”)

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Why fast simulation? Achieve quick response to local detector modifications, but not intended to replace full simulation –Doesn’t make sense to try detector modifications using the full simulation and reconstruction chain MOKKA/MARLIN (distributed among different institutes, would take months) –Use full simulation to make an ‘ultimate check’ on a promising detector modification Simple to use, even by non experts Doesn’t demand much preparation time Quick results, can be installed on a laptop Effect of various detector modifications can quickly be resolved Human readable, simplified detector description should be standardized to make results comparable

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan The Vienna Fast Simulation Tool Simple, but flexible and powerful tool, written in MatLab Detector design studies –Geometry: cylinders (barrel) or planes (forward/rear) –Material budget, resolutions, inefficiencies Simulation –Solenoid magnetic field, helix track model –Multiple scattering, measurement errors and inefficiencies –No further corruption, therefore no pattern recognition –Strips and pads, uniform and gaussian errors (in TPC with diffusion corr.) Reconstruction –Kalman filter –Optimal linear estimator according to Gauss-Markov (no corruption) –Fitted parameters and corresponding covariances at the beamtube Output –Resolution of the reconstructed track parameters inside the beam tube –Impact parameters (projected and in space) –Test quantities (pulls, χ 2, etc.)

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Subsequent Vertex Fit Fitted tracks as input to the VERTIGO/RAVE toolkit; Interface is the Harvester‘s standard CSV format; Successfully tested with 10- and 1000-prong events. Tracks from barrel region Tracks from forward region

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Basic detector description (VTX) DescriptionBeam pipeVertex detector (VTX) Name XBTVTX1VTX2 VTX4VTX5 R [mm] 14 [1] 16 [1] 26 [1] 37 [1] 48 [1] 60 [1] z max [mm] 50 [1] 120 [1] z min [mm] -50 [1] -120 [1] Stereo angle (π/2) [1] d [%X 0 ] [2] Pitch [μm] passive24x24 [2] Remarks Pixels [1] [1]: Detector Outline Document (DOD) for the LDC, Aug [2]: M. Vos: Pixel R&D at IFIC Valencia, SiLC Meeting, Torino, Dec. 2007

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Basic detector description (SIT, SET) DescriptionSilicon Inner tracker (SIT) Silicon External Tracker (SET) NameSIT1SIT2SET1SET2 R [mm]160 [3] 270 [3] 1600 [3] 1610 [3] z max [mm]380 [3] 660 [3] 2500 [3] z min [mm]-380 [3] -660 [3] [3] Stereo angle0°/90° [3] d [%X 0 ]0.5 [4] 0.65 [3] Pitch [μm]50/50 [3] Remarks Double-sided strips [3] Double-sided strips [3]: V. Saveliev, A. Savoy-Navarro, M. Vos: Silicon Tracking, ILD Meeting, Zeuthen, Jan [4]: M. Vos: The silicon tracker elements, SiLC phone conference,

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Basic detector description (TPC) Description Inner wall196 pad rings Outer wall Name XTPCW1TPC1-TPC196 [1] XTPCW2 R [mm] 300 [4] 300 [4] – 1580 [4] 1580 [4] z max [mm] 2160 [4] z min [mm] [4] Stereo angle (π/2) d [%X 0 ] 1.16 [7] (per layer)1.51 [7] Errors [μm] σ² = σ σ 1 ²  sin²  + c Diff 2  6mm/h  sin  ∆z[m], h = padrow pitch [5] passive σ 0 [μm]σ 1 [μm]c Diff [μm/√m] passive RΦRΦ50 [5] 900 [5] 53 [5] z15 [5] 0580 [6] [5]: R. Settles: communication, [6]: V. Lepeltier: Private communication, 2006 [7]: MOKKA Database,

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Basic detector description (forward/rear) DescriptionForward Tracker Discs Name FTD1FTD2FTD3 z [mm]  220 [3]  350 [3]  500 [3] R max [mm] 140 [3] 210 [3] R min [mm] 29 [3] 32 [3] 35 [3] Coord. angle  1 /  2 [°] 0/90 d [%X 0 ] 0.3 [7] Pitch [μm] 35x35 [3] Remarks Pixels

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan DescriptionForward Tracker DiscsTPC endcap NameFTD4FTD5FTD6FTD7XTPCEC z [mm]  850 [3]  1200 [3]  1550 [3]  1900 [3]  2160 [4] R max [mm]270 [3] 290 [3] 300 [4] R min [mm]51 [3] 72 [3] 93 [3] 113 [3] 1580 [4] Coord. angle  1 /  2 [°]  10 d [%X 0 ]0.3 [7] 15 [5] Pitch [μm]35/35 [3] RemarksStrips passive Basic detector description (forward/rear)

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Display of basic detector description

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Display of basic detector description

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Barrel input sheet 04 Vertex Detector (VTX) Number of layers : 6 07 Description (optional) : |-Beamt.-| Vertex detector | 08 Names of the layers (opt.) : XBT, VTX1, VTX2, VTX3, VTX4, VTX5 09 Radii [mm] : 14, 16, 26, 37, 48, 60, 10 Upper limit in z [mm] : 3000, 50, 120, 120, 120, Lower limit in z [mm] : -3000, -50, -120, -120, -120, Efficiency RPhi : 0, 0.95, 0.95, 0.95, 0.95, Efficiency 2nd coord. (eg. z): Stereo angle alpha [Rad] : pi/2 15 Thickness [rad. lengths] : , , , , , error distribution : normal-sigma(RPhi) [1e-6m] : 18 sigma(z) [1e-6m] : 19 1 uniform-d(RPhi) [1e-6m] : d(z) [1e-6m] : Silicon Inner Tracker (SIT) Number of layers : 3 25 Description (optional) : |--Inner tracker--|TPC inner wall| 26 Names of the layers (opt.) : SIT1, SIT2, XTPCW 27 Radii [mm] : 160, 270, Upper limit in z [mm] : 380, 660, Lower limit in z [mm] : -380, -660, Efficiency RPhi : 0.95, 0.95, 0 31 Efficiency 2nd coord. (eg. z): 0.95, 0.95, Stereo angle alpha [Rad] : pi/2 33 Thickness [rad. lengths] : 0.005, 0.005, error distribution : normal-sigma(RPhi) [1e-6m] : 36 sigma(z) [1e-6m] : 37 1 uniform-d(RPhi) [1e-6m] : d(z) [1e-6m] : 35 39

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan 40 Time Projection Chamber (TPC) 41 sigma^2=sigma0^2+sigma1^2*sin(beta)^2+Cdiff^2*6mm/h*sin(theta)*Ldrift[m] 42 Number of layers : Radii [mm] : 300, Upper limit in z [mm] : Lower limit in z [mm] : Efficiency RPhi : Efficiency z : Thickness [rad. lengths] : sigma0(RPhi) [1e-6m] : sigma1(RPhi) [1e-6m] : Cdiff(RPhi) [1e-6m/sqrt(m)] : sigma0(z) [1e-6m] : sigma1(z) [1e-6m] : 0 54 Cdiff(z) [1e-6m/sqrt(m)] : Silicon External Tracker (SET) Number of layers : 3 59 Description (optional) : |TPC outer wall|-External Tracker-| 60 Names of the layers (opt.) : XTPCW2, SET1, SET2 61 Radii [mm] : 1580, 1600, Upper limit in z [mm] : 2160, 2500, Lower limit in z [mm] : -2160, -2500, Efficiency RPhi : 0, 0.95, Efficiency 2nd coord. (eg. z): -1, 0.95, Stereo angle alpha [Rad] : pi/2 67 Thickness [rad. lengths] : , error distribution : normal-sigma(RPhi) [1e-6m] : 70 sigma(z) [1e-6m] : 71 1 uniform-d(RPhi) [1e-6m] : d(z) [1e-6m] : Barrel input sheet 74 Magnetic field and beam spot Solenoid magnetic field [T] : 4 77 Range in x [mm] : Range in y [mm] : -1e-05 1e Range in z [mm] :

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan Barrel input sheet 04 Forward module Number of layers : 3 07 Description (optional) : 08 Names of the layers (opt.): FTD1, FTD2, FTD3 09 z positions [mm] : 220, 350, Inner radius [mm] : 29, 32, Outer radius [mm] : 140, 140, Efficiency u : Efficiency v : Angle 1st coord. (u) [Rad]: 0 15 Angle 2nd coord. (v) [Rad]: pi/2 16 Thickness [rad. lengths] : error distribution : normal-sigma(u) [1e-6m] : 19 sigma(v) [1e-6m] : 20 1 uniform-d(u) [1e-6m] : d(v) [1e-6m] : Forward module Number of layers : 4 26 Description (optional) : 27 Names of the layers (opt.): FTD4, FTD5, FTD6, FTD7, XTPCEC 28 z positions [mm] : 850, 1200, 1550, 1900, Inner radius [mm] : 51, 72, 93, 113, Outer radius [mm] : 270, 290, 290, 290, Efficiency u : 0.95, 0.95, 0.95, 0.95, 0 32 Efficiency v : 0.95, 0.95, 0.95, 0.95, Angle 1st coord. (u) [Rad]: 0*pi/ Angle 2nd coord. (v) [Rad]: 90*pi/ Thickness [rad. lengths] : 0.003,0.003, 0.003, 0.003, error distribution : normal-sigma(u) [1e-6m] : 38 sigma(v) [1e-6m] : 39 1 uniform-d(u) [1e-6m] : d(v) [1e-6m] : Rear module Number of layers : Description (optional) : 46 Names of the layers (opt.): 47 z positions [mm] : 48 Inner radius [mm] : 49 Outer radius [mm] : 50 Efficiency u : 51 Efficiency v : 52 Angle 1st coord. (u) [Rad]: 53 Angle 2nd coord. (v) [Rad]: 54 Thickness [rad. lengths] : 55 error distribution : 56 0 normal-sigma(u) [1e-6m] : 57 sigma(v) [1e-6m] : 58 1 uniform-d(u) [1e-6m] : 59 d(v) [1e-6m] : Rear module Number of layers : Description (optional) : 65 Names of the layers (opt.): 66 z positions [mm] : 67 Inner radius [mm] : 68 Outer radius [mm] : 69 Efficiency u : 70 Efficiency v : 71 Angle 1st coord. (u) [Rad]: 72 Angle 2nd coord. (v) [Rad]: 73 Thickness [rad. lengths] : 74 error distribution : 75 0 normal-sigma(u) [1e-6m] : 76 sigma(v) [1e-6m] : 77 1 uniform-d(u) [1e-6m] : 78 d(v) [1e-6m] :

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan DETECTOR DESCRIPTION FOR FAST SIMULATION BASIC IDEA: –Parallel to full detector description, define a basic detector description, limited to cylinders in the barrel and planes in the forward region. –It should serve as a starting point for local detector studies of the trackers. –Without agreement on a common starting version results of different detector optimization studies will never be comparable (neither with fast simulation, nor with MOKKA/MARLIN). –Increases flexibility and speed, and yields useful and comparable results, which may be validated by full simulation once in a while.

Vienna Fast Simulation LDT Vienna, Austria, 26 March 2008 M. Regler, M. Valentan The Vienna Fast Simulation Tool for charged tracks (LDT). Info on the web: ==> lictoy Acknowledgements The software was designed and developed by the Vienna ILC Project Group in response to encouragement from the SiLC R&D Project. Efficient helix tracking was actively supported by W. Mitaroff. Special thanks are due to R. Frühwirth for the Kalman filter algorithms used in the program.