Updates Assignment 07 is due Fri., March 30 (in class) Prepare well for the final exam; a good score can compensate for low midterm marks!

Slides:



Advertisements
Similar presentations
Chapter 20: Electrochemsitry A.P. Chemsitry Oxidation-Reduction Reactions Oxidation-reduction reactions (or redox reactions) involve the transfer.
Advertisements

Cells and Potentials. Voltaic Cells In spontaneous oxidation- reduction (redox) reactions, electrons are transferred and energy is released. © 2009, Prentice-Hall,
Oxidation Reduction Chemisty: Redox Chemistry
Chapter 18 Electrochemistry. Redox Reaction Elements change oxidation number  e.g., single displacement, and combustion, some synthesis and decomposition.
Announcements Exam #3 is THURSDAY! Chapter 13 – EDTA Titrations Chapter 23 – What is Chromatography Chapter 24 – Gas Chromatography* Chapter 25 – HPLC*
Prentice Hall © 2003Chapter 20 Zn added to HCl yields the spontaneous reaction Zn(s) + 2H + (aq)  Zn 2+ (aq) + H 2 (g). The oxidation number of Zn has.
Voltaic Cells Chapter 20.
Electrochemistry Chapter and 4.8 Chapter and 19.8.
Electrochemistry ELECTROCHEMISTRY INVOLVES TWO MAIN TYPES OF PROCESSES A. Voltaic(galvanic) cells – which are spontaneous chemical reactions (battery)
Electrochemical Reactions
Electrochemistry Chapter 4.4 and Chapter 20. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Chapter 20 – Redox Reactions One of the earliest recognized chemical reactions were with oxygen. Some substances would combine with oxygen, and some would.
Chapter 20 Electrochemistry
Oxidation and Reduction (REDOX) reactions?
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
OXIDATION AND REDUCTION REACTIONS CHAPTER 7. REDOX REACTIONS Redox reactions: - oxidation and reduction reactions that occurs simultaneously. Oxidation:
Electrochemistry Chapter 20 Electrochemistry. Electrochemistry Electrochemical Reactions In electrochemical reactions, electrons are transferred from.
Electrochemistry Chapter 20 Electrochemistry. Electrochemistry Electrochemical Reactions In electrochemical reactions, _________________ are transferred.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry and Redox Reactions. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Chapter 20 Electrochemistry 1. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another. 2.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 20 Brown-LeMay. Review of Redox Reactions Oxidation - refers to the loss of electrons by a molecule, atom or ion - LEO goes Reduction.
Chapter 20 Electrochemistry Lecture Presentation © 2012 Pearson Education, Inc.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Electrochemistry Chapter 19 2 Electron transfer reactions are oxidation- reduction or redox reactions. Electron transfer reactions result in the generation.
Redox Reactions and Electrochemistry Chapter 19. Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy.
Voltaic/Galvanic Cells. Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy is released.
Chapter 20 Electrochemistry. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another.
Chapter 20 Electrochemistry. © 2009, Prentice-Hall, Inc. Oxidation Numbers In order to keep track of what loses electrons and what gains them, we assign.
Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Combining the Half-Reactions 5 C 2 O 4 2−  10 CO e − 10 e − + 16 H MnO 4 −  2 Mn H 2 O When we add these together,
Electrochemistry Chapter 18 Electrochemistry. Electrochemistry Electrochemical Reactions In electrochemical reactions, electrons are transferred from.
Electrochemistry © 2009, Prentice-Hall, Inc. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another.
Galvanic Cells Electrochem part II. Voltaic Cells In spontaneous oxidation- reduction (redox) reactions, electrons are transferred and energy is released.
Electrochemistry. What is “electrochemistry”? The area of chemistry concerned with the interconversion of chemical and electrical energy. Energy released.
Electrochemistry Ch. 18 Electrochemistry 18.1 Voltaic Cells.
Chapter 20 Electrochemistry. Oxidation States electron bookkeeping * NOT really the charge on the species but a way of describing chemical behavior. Oxidation:
Chapter 18 Electrochemistry Lesson 1. Electrochemistry 18.1Balancing Oxidation–Reduction Reactions 18.2 Galvanic Cells 18.3 Standard Reduction Potentials.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 20: Electrochemistry. © 2009, Prentice-Hall, Inc. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species.
Chapter 21 Electrochemistry. Voltaic Cells  Electrochemical cells used to convert chemical energy into electrical energy  Produced by spontaneous redox.
Electrochemistry Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an.
Electrochemistry.
Chapter 20 Electrochemistry
Electrochemistry Chapter 19
Dr. Aisha Moubaraki CHEM 202
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19
Chapter 20 Electrochemistry
Chapter 20 Electrochemistry
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Presentation transcript:

Updates Assignment 07 is due Fri., March 30 (in class) Prepare well for the final exam; a good score can compensate for low midterm marks!

Free Energy and Equilibrium Under any conditions, the free energy change can be found this way:  G =  G  + RT lnQ (Under standard conditions, all concentrations are 1 M, so Q = 1 and lnQ = 0; the last term drops out and  G =  G  ) Note: at equilibrium, there is no net change in [reactants] and [products] so ΔG = 0. This is true for any reaction. To compare free energies of different reactions, it is useful to tabulate ΔG o values under identical conditions (1 M or 1 atm), and we call these conditions standard conditions (ΔG o ). Standard conditions does not imply the reactions are at equilibrium; therefore ΔG o will be positive or negative and indicative of whether a reaction is spontaneous. We can use this number to calculate the actual ΔG under any set of conditions. Under standard conditions, ΔG = ΔG o Under equilibrium conditions, ΔG = 0 Under nonequilibrium, nonstandard conditions, ΔG = something other than 0 or ΔG o

Free Energy and Equilibrium At equilibrium, Q = K, and  G = 0. The equation becomes 0 =  G  + RT lnK Rearranging, this becomes  G  =  RT lnK or, K = e  G  /RT

Redox Reactions and Electrochemistry Chapter 19

Oxidation and Reduction What is reduced is the oxidizing agent. –H + oxidizes Zn by taking electrons from it. What is oxidized is the reducing agent. –Zn reduces H + by giving it electrons.

Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1.Free elements (uncombined state) have an oxidation number of zero. Na, Be, K, Pb, H 2, O 2, P 4 = 0 2.In monatomic ions, the oxidation number is equal to the charge on the ion. Li +, Li = +1; Fe 3+, Fe = +3; O 2-, O = -2 3.The oxidation number of oxygen is usually –2. In H 2 O 2 and O 2 2- it is –

4.The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is –1. 6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion. 5.Group IA metals are +1, IIA metals are +2 and fluorine is always –1. HCO 3 - O = -2H = +1 3x(-2) ? = -1 C = +4 Oxidation numbers of all the atoms in HCO 3 - ? 19.1

Balancing Redox Equations Write the unbalanced equation for the reaction in ionic form. The oxidation of Fe 2+ to Fe 3+ by Cr 2 O 7 2- (where dichromate ions are reduced to Cr 3+ ions) in acid solution? Fe 2+ + Cr 2 O 7 2- Fe 3+ + Cr 3+ 2.Separate the equation into two half-reactions. Oxidation: Cr 2 O 7 2- Cr Reduction: Fe 2+ Fe Balance the atoms other than O and H in each half-reaction. Cr 2 O Cr 3+

Balancing Redox Equations 4.For reactions in acid, add H 2 O to balance O atoms and H + to balance H atoms. Cr 2 O Cr H 2 O 14H + + Cr 2 O Cr H 2 O 5.Add electrons to one side of each half-reaction to balance the charges on the half-reaction. Fe 2+ Fe e - 6e H + + Cr 2 O Cr H 2 O 6.If necessary, equalize the number of electrons in the two half- reactions by multiplying the half-reactions by appropriate coefficients. 6Fe 2+ 6Fe e - 6e H + + Cr 2 O Cr H 2 O 19.1

Balancing Redox Equations 7.Add the two half-reactions together and balance the final equation by inspection. The number of electrons on both sides must cancel. 6e H + + Cr 2 O Cr H 2 O 6Fe 2+ 6Fe e - Oxidation: Reduction: 14H + + Cr 2 O Fe 2+ 6Fe Cr H 2 O 8.Verify that the number of atoms and the charges are balanced. 14x1 – 2 + 6x2 = 24 = 6x3 + 2x For reactions in basic solutions, add OH - to both sides of the equation for every H + that appears in the final equation.

SAMPLE EXERCISE Balancing Redox Equations in Basic Solution Solve: Step 1: We assign oxidation states. This is a tricky one! Complete and balance this equation for a redox reaction that takes place in basic solution: Solution Mn goes from 7+ to 4+. The sum of the oxidation states of C and N in CN – must be –1, the overall charge of the ion. In CNO –, if oxygen has an oxidation state of –2 as usual, the sum of the oxidation states of C and N must be +1. So, overall, CN – is oxidized by two electrons. Step 2: We write the incomplete, unbalanced half-reactions: Step 3: We balance each half-reaction as if it took place in acidic solution:

SAMPLE EXERCISE continued Both half-reactions are now balanced—you can check the atoms and the overall charge. Now we need to take into account that the reaction occurs in basic solution, adding OH – to both sides of both half-reactions to neutralize H + : We now “neutralize” H + and OH – by forming H 2 O when they are on the same side of either half-reaction: Next, we cancel water molecules that appear as both reactants and products:

SAMPLE EXERCISE continued Step 5: Now we can add the two half-reactions together and simplify by canceling species that appear as both reactants and products: Steps 6 and 7: Check that the atoms and charges are balanced. There are 3 C, 3 N, 2 H, 9 O, 2 Mn, and a charge of 5– on both sides of the equation. Step 4: Now we multiply the cyanide half-reaction through by 3, which will give six electrons on the product side; and multiply the permanganate half- reaction through by 2, which will give six electrons on the reactant side:

Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy is released.

Voltaic Cells We can use that energy to do work if we make the electrons flow through an external device. We call such a setup a voltaic cell.

Voltaic Cells A typical cell looks like this. The oxidation occurs at the anode. The reduction occurs at the cathode.

Voltaic Cells Once even one electron flows from the anode to the cathode, the charges in each beaker would not be balanced and the flow of electrons would stop.

Voltaic Cells Therefore, we use a salt bridge, usually a U-shaped tube that contains a salt solution, to keep the charges balanced. –Cations move toward the cathode. –Anions move toward the anode.

Voltaic Cells In the cell, then, electrons leave the anode and flow through the wire to the cathode. As the electrons leave the anode, the cations formed dissolve into the solution in the anode compartment.

Voltaic Cells As the electrons reach the cathode, cations in the cathode are attracted to the now negative cathode. The electrons are taken by the cation, and the neutral metal is deposited on the cathode.

Electromotive Force (emf) Water only spontaneously flows one way in a waterfall. Likewise, electrons only spontaneously flow one way in a redox reaction—from higher to lower potential energy.

Electromotive Force (emf) The potential difference between the anode and cathode in a cell is called the electromotive force (emf). It is also called the cell potential, and is designated E cell.

Cell Potential Cell potential is measured in volts (V). 1 V = 1 JCJC

Standard Reduction Potentials Reduction potentials for many electrodes have been measured and tabulated.