Digital Imaging. Digital image - definition Image = “a two-dimensional function, f(x,y), where x and y are spatial coordinates, and the amplitude of f.

Slides:



Advertisements
Similar presentations
Digital Image Processing
Advertisements

Digital Image Fundamentals Selim Aksoy Department of Computer Engineering Bilkent University
Chapter 3 Image Enhancement in the Spatial Domain.
Digital Radiography.
Digital Image Fundamentals Selim Aksoy Department of Computer Engineering Bilkent University
Digital Imaging and Image Analysis
Motivation Application driven -- VoD, Information on Demand (WWW), education, telemedicine, videoconference, videophone Storage capacity Large capacity.
Science Afternoon at NIST Scanning Electron Microscopy (SEM) Brad Damazo, Prem Kavuri, Bin Ming, Kate Klein and Andras Vladar Nanometer Scale Metrology.
 Image Characteristics  Image Digitization Spatial domain Intensity domain 1.
Digital Images A basic image capture system – review The fundamental properties of the digital photographic image. Monochrome Images Color Images Sampling.
Bit Depth and Spatial Resolution SIMG-201 Survey of Imaging Science © 2002 CIS/RIT.
School of Computing Science Simon Fraser University
Digital Image Processing: Digital Imaging Fundamentals.
Multimedia Data Introduction to Image Processing Dr Mike Spann Electronic, Electrical and Computer.
RIT Course Number Lecture Noise
Charge Coupled Device (CCD)
IMAGE 1 An image is a two dimensional Function f(x,y) where x and y are spatial coordinates And f at any x,y is related to the brightness at that point.
Digital Images The nature and acquisition of a digital image.
Overview of Scientific Imaging using CCD Arrays Jaal Ghandhi Mechanical Engineering Univ. of Wisconsin-Madison.
Digital Image Characteristic
Different sources of noise in EM-CCD cameras
CDS Fall, 2010 Computing for Scientists Measurements (Sep. 14, 2010 – Sep. 29, 2010) Jie Zhang Copyright ©
Detecting Electrons: CCD vs Film Practical CryoEM Course July 26, 2005 Christopher Booth.
The Digital Image.
Digital Images Chapter 8 Exploring the Digital Domain.
Photon Transfer Method 1. Using two identical flat field exposures it is possible to measure the read noise of a CCD with the Photon Transfer method. Two.
Image Formation. Input - Digital Images Intensity Images – encoding of light intensity Range Images – encoding of shape and distance They are both a 2-D.
IMAGE SAMPLING AND IMAGE QUANTIZATION 1. Introduction
Digital Image Processing in Life Sciences March 14 th, 2012 Lecture number 1: Digital Image Fundamentals.
University of Ioannina - Department of Computer Science Intensity Transformations (Point Processing) Christophoros Nikou Digital Image.
CS654: Digital Image Analysis Lecture 17: Image Enhancement.
The Digital Image Dr. John Ryan.
© 1999 Rochester Institute of Technology Introduction to Digital Imaging.
Seeram Chapter #3: Digital Imaging
BMME 560 & BME 590I Medical Imaging: X-ray, CT, and Nuclear Methods Introductory Topics Part 2.
Multimedia Data Introduction to Image Processing Dr Sandra I. Woolley Electronic, Electrical.
September 5, 2013Computer Vision Lecture 2: Digital Images 1 Computer Vision A simple two-stage model of computer vision: Image processing Scene analysis.
Factors affecting CT image RAD
1 COMS 161 Introduction to Computing Title: Digital Images Date: November 12, 2004 Lecture Number: 32.
10/26/20151 Observational Astrophysics I Astronomical detectors Kitchin pp
A Simple Image Model Image: a 2-D light-intensity function f(x,y)
3. Image Sampling & Quantisation 3.1 Basic Concepts To create a digital image, we need to convert continuous sensed data into digital form. This involves.
Digital Image Processing (DIP) Lecture # 5 Dr. Abdul Basit Siddiqui Assistant Professor-FURC 1FURC-BCSE7.
Digital image processing Chapter 3. Image sampling and quantization IMAGE SAMPLING AND IMAGE QUANTIZATION 1. Introduction 2. Sampling in the two-dimensional.
FE8113 ”High Speed Data Converters”. Course outline Focus on ADCs. Three main topics:  1: Architectures ”CMOS Integrated Analog-to-Digital and Digital-to-
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Image Processing Example.
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Image Processing Example.
Digital imaging By : Alanoud Al Saleh. History: It started in 1960 by the National Aeronautics and Space Administration (NASA). The technology of digital.
Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh). 1 Counting Statistics and Error Prediction Poisson Distribution ( p.
DIGITAL IMAGE. Basic Image Concepts An image is a spatial representation of an object An image can be thought of as a function with resulting values of.
Image Processing Ch2: Digital image Fundamentals Prepared by: Tahani Khatib.
Radiation Detection and Measurement, JU, 1st Semester, (Saed Dababneh). 1 Radioactive decay is a random process. Fluctuations. Characterization.
IMAGE SAMPLING AND IMAGE QUANTIZATION 1. Introduction
Chem. 133 – 2/4 Lecture. Announcements Quiz 1 today HW Set 1.1 due today Lab –Supposed to be finishing electronics lab today (will see where you are at.
HOW SCANNERS WORK A scanner is a device that uses a light source to electronically convert an image into binary data (0s and 1s). This binary data can.
Designing a Microscopy Experiment Kurt Thorn, PhD Director, Image from Susanne Rafelski, Marshall lab.
Mohammed AM Dwikat CIS Department Digital Image.
Introduction to Digital Image Analysis Kurt Thorn NIC.
Digital Cameras in Microscopy Kurt Thorn Nikon Imaging QB3/UCSF.
Tytus Bernas Biological applications of image processing.
Lecture Six Figures from Gonzalez and Woods, Digital Image Processing, Second Edition, Copyright 2002.
Chem. 133 – 2/7 Lecture.
Charge Transfer Efficiency of Charge Coupled Device
Image quality and Performance Characteristics
Multimedia Systems and Applications
Chapter 3 Sampling.
IT – 472 Digital Image Processing
Chapter I, Digital Imaging Fundamentals: Lesson II Capture
Instrument Considerations
Image Enhancement in the Spatial Domain
Presentation transcript:

Digital Imaging

Digital image - definition Image = “a two-dimensional function, f(x,y), where x and y are spatial coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity (gray level of the image) at that point. When x, y, and the amplitude values of f are all finite, discrete quantities, we call the image a digital image.” (Gonzalez and Woods).

Analog to digital conversion הדמות המתקבלת לאחר האופטיקה היא אנלוגית, כלומר התפלגות רציפה של הסיגנל במרחב. לשם נוחות אנו מעוניינים להפוך את הדמות לדיגיטלית, כלומר בדידה.

Analog to digital conversion הדמות המתקבלת לאחר האופטיקה היא אנלוגית, כלומר התפלגות רציפה של הסיגנל במרחב. לשם נוחות אנו מעוניינים להפוך את הדמות לדיגיטלית, כלומר בדידה.

Analog to digital conversion התמונה הדיגיטלית מורכבת ממערך של פיקסלים המייצגים ערכי עוצמה ומסודרים בקורדינטות מרחביות. ההמרה מאנלוגי לדיגיטלי מתבצעת בשני שלבים : Sampling – התהליך בו הופכים לדיגיטלי את המידע המרחבי. Quantization – התהליך בו המידע על ערכי המשרעת באותם קורדינטות מרחביות הופך לדיגיטלי

Image map

Image map

Image resolution Image resolution is a measure of the degree to which the digital image represents the fine details of the analog image recorded by the microscope. האיכות ( רזולוציה ) של התמונה הדיגיטלית נקבעת ע " י שני גורמים : Spatial resolution - המספר הכולל של הפיקסלים בתמונה. Grayscale/Brightness range/Bit-depth - טווח ערכי הבהירות האפשרי לכל פיקסל.

Spatial resolution ככל שמספר הפיקסלים ליחידת שטח גדל, גדלה הרזולוציה המרחבית. המצב האופטימאלי הוא כאשר מתאימים את תדירות הדגימה (sampling frequency) לרזולוציה של הדמות המתקבלת מהמיקרוסקופ.

Spatial resolution The Nyquist criterion המרחק בין כל דגימה (sampling interval) צריך להיות לכל היותר חצי מהרזולוציה האופטית. ע " מ לקבל תמונות באיכות גבוהה, רצוי שיהיו דגימות לרזולוציה האופטית. דוגמה : אם הרזולוציה של המיקרוסקופ היא 0.22 מיקרון ואני סורק 512 פיקסלים, שדה הראיה המקסימלי יהיה כ - 56 מיקרון (512x0.11). שדה הראיה האופטימלי יהיה כ -37 מיקרון (512x0.22/3).

128 x x x x 64 Spatial resolution Changing the resolution of the image without changing bit-depth

Brightness - Bit depth בתהליך הקוונטיזציה אנו ממירים את עוצמת הגוון הרציף של הדוגמה לערכי בהירות דיגיטליים. הדיוק של הערכים הדיגיטליים פרופורציוני ל -bit depth.

2 2 =4 2 1 =2 0,1 Black and White Image 2 0 =1 2 8 =256 0,1,2, … Grey Levels Image 2 14 = = =65536 Gray level - Bit depth Gray level resolution is a term used to describe the binning of the signal rather than the actual difference we managed to obtain when we quantized the signal. 8-bit and 16-bit images are the most common ones, but 10- and 12-bit images can also be found. בכל המקרים 0 מייצג לבן והערך הכי גבוה מייצג שחור. כל הערכים שבתווך מייצגים רמות שונות של אפור.

Black and White (1 bit per pixel(16 Greys (4 bits per pixel) 256 Greys (8 bits per pixel) Bit depth

False contouring due to insufficient grey levels Eye has limited ability to distinguish grey levels/colours Above 32 grey levels images look smooth - 16 and below grey levels eye perceives objectionable banding = false contours. Low level Processing - Grey level display

2bit 3bit 4bit 8bit 1bit Changing the bit-depth of the image without changing spatial resolution Bit depth

a measure of changes in image signal intensity (ΔI) in relation to the average image intensity (I): C = ΔI/ I the Rayleigh Criterion is not a fixed limit but rather, the spatial frequency at which the contrast has dropped to about 25 percent. Contrast

Signal to noise - definitions S:N ratio = One of the most important limitations to image quality and image processing Signal Variation in the signal Noise is NOT: background, auto-fluorescence or dark signal Good image data has a high S:N ratio

Signal to noise – shot noise Additional sources of noise: digitisation, detector readout, thermal noise. Average signal = 9, S:N ratio = 3 Average signal = 100, S:N ratio = 10 Average signal = 10,000, S:N ratio = 100 Statistics of photon counting dictate the minimum useful signal A meaningful difference in intensity needs to be at least three times the noise level Poisson distributed variation: S:N ratio = n √n Fundamental limit = Poisson distributed statistics of photon detection also known as Shot Noise shot noise is associated with the particle nature of light.

Signal to noise – shot noise Going from left to right, the mean number of photons per pixel over the whole image is (top row) 0.001, 0.01, 0.1 (middle row) 1.0, 10.0, (bottom row) 1,000.0, 10,000.0 and 100, A photon noise simulation, using a sample image as a source and a per-pixel Poisson process to model an otherwise perfect camera (quantum efficiency = 1, no read-noise, no thermal noise, etc).

1000 photons / pixel100 photons / pixel10 photons / pixel Signal to noise – shot noise

Time and noise - tradeoffs The number of photons collected by the camera generally determines the amount of noise in your image Noise = square root (# of photons) Doubling signal to noise ratio requires 4-fold increase in exposure

Noise and resolution Two spots separated by diffraction limit Theoretical perfect data

Noise and resolution 1000 ph/pixel at peak With shot noise 100 ph/pixel at peak10 ph/pixel at peak

Noise and resolution 1000 ph/pixel at peak Expected error bars with shot noise 100 ph/pixel at peak10 ph/pixel at peak

Noise and resolution High resolution and precise quantitation both require lots of light This means bright samples or long exposures This may cause problems with photobleaching and phototoxicity Be aware of potential tradeoffs between precision, speed, and photobleaching

The definitions of noise components in image data are confusing. Noise = variation in signal - you cannot simply subtract a “noise value”. Noise is NOT dark signal or background but they CONTRIBUTE to image noise. Dark signal = generated by camera Has an average value component and a noise (variation) component. Subtracting a dark offset value does not remove the noise component. Background = autofluorescence of sample Is a real fluorescence signal and has associated shot noise. Subtracting an autofluorescence image does not remove the noise. Signal to noise - take home messages

Presentation of 16-bit Image in OS Windows