Magnetization Process of Molecular Magnet in ultra-fast sweeping magnetic fields 1. Introduction to High Field Lab. in Okayama 2. Ultra-fast sweeping magnetic.

Slides:



Advertisements
Similar presentations
The Physical Methods in Inorganic Chemistry (Fall Term, 2004) (Fall Term, 2005) Department of Chemistry National Sun Yat-sen University 無機物理方法(核磁共振部分)
Advertisements

Anisotropy and Dzyaloshinsky- Moriya Interaction in V15 Manabu Machida, Seiji Miyashita, and Toshiaki Iitaka IIS, U. Tokyo Dept. of Physics, U. Tokyo RIKEN.
Terahertz spectroscopy of electromagnons excitation in a hexaferrite Ba 2 Mg 2 Fe 12 O 22 Ashida Lab. Tadataka Saito Phy.Rev.B 83, (2011) Phy.Rev.
Superconducting Quantum Interference Device SQUID C. P. Sun Department of Physics National Sun Yat Sen University.
SUBMERGED ARC SYNTHESIS OF MAGNETIC NANOPARTICLES N. Parkansky a, G. Leitus b, B. Alterkop a, R.L.Boxma n a, Z. Barkay c, Yu. Rosenberg c. a Electrical.
ELECTROMAGNETIC CANNON. Question  A solenoid can be used to fire a small ball. A capacitor is used to energize the solenoid coil. Build a device with.
Ashida lab. Onishi Yohei
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
LPS Quantum computing lunchtime seminar Friday Oct. 22, 1999.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Noise near peak field is increased Peak width narrow Peak is symmetric Purpose: Resonate nuclei to prevent polarization. Matching the resonant frequencies.
Y. Acremann, Sara Gamble, Mark Burkhardt ( SLAC/Stanford ) Exploring Ultrafast Excitations in Solids with Pulsed e-Beams Joachim Stöhr and Hans Siegmann.
Stanford - SSRL: J. Lüning W. Schlotter H. C. Siegmann Y. Acremann...students Berlin - BESSY: S. Eisebitt M. Lörgen O. Hellwig W. Eberhardt Probing Magnetization.
Nuclear spin irreversible dynamics in crystals of magnetic molecules Alexander Burin Department of Chemistry, Tulane University.
ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4.
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
SPIN 2004 Oct. 14, 2004 W. Kim, S.S. Stepanyan, S. Woo, M. Rasulbaev, S. Jin (Kyungpook National University) S. Korea Polarization Measurements of the.
Introduction to Single Molecular Magnet
Electron Spin Resonance Spectroscopy
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
Magnetic Material Engineering. Chapter 6: Applications in Medical and Biology Magnetic Material Engineering.
DHB, nEDM Collab. Mtg, 15/16 Apr 04 UIUC Test System (Beck, Chandler, Hertzog, Kammel, Newman, Peng, Sharp, Williamson, Yoder; Blackburn, Kenyon, Thorsland)
Generator magnet program: The future. 85T Multi-Shot and 60T Long Pulse magnets are state of the art world record magnets with an established user program.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Magnetism and Uses Goals: magnetism, source, types, electromagnetism, magnetic materials, force calculations, motors, generators and transformers.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
Magnetization dynamics
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
ELECTROMAGNETIC CANNON Reporter: Hsieh, Tsung-Lin Taiwan.
Polarized Proton Solid Target for RI beam experiments M. Hatano University of Tokyo H. Sakai University of Tokyo T. Uesaka CNS, University of Tokyo S.
Itoh Lab. M1 Masataka YASUDA
Spin Dynamics of Superfluid 3 He in Aerogel Osamu Ishikawa Osaka City University.
  Satyendra Prakash Pal DEPARTMENT OF PHYSICAL SCIENCES
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Managed by UT-Battelle for the Department of Energy Dynamically Polarized Solid Target for Neutron Scattering Josh Pierce, J.K. Zhao Oak Ridge National.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
2007/11/02nEDM BOSTON1 Dressing Field Study Pinghan Chu University of Illinois at Urbana-Champaign nEDM Collaboration Boston Dressed.
1)MR dependence on temperature: a)Movement of switching fields from overlapping H=0 at high temp to separated and apart at low temp. (working theory: VT.
Single Molecular Magnets
M. Hosaka a, M. Katoh b, C. Szwaj c, H. Zen b M. Adachi b, S. Bielawski c, C. Evain c M. Le Parquier c, Y. Takashima a,Y. Tanikawa b Y. Taira b, N. Yamamoto.
Optical Receivers Theory and Operation
Syntheses of high-spin and cluster molecules Hiroki OSHIO (University of Tsukuba) Syntheses and Magnetic measurements Dr. M. Nihei, A. Yoshida, K. Koizumi,
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Switching with Ultrafast Magnetic Field Pulses Ioan Tudosa.
Effects of Arrays arrangements in nano-patterned thin film media
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Terahertz Charge Dynamics in Semiconductors James N. Heyman Macalester College St. Paul, MN.
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Ultra-Fast Silicon Detector 1 This report is a summary of what was shown at IEEE. Nicolo Cartiglia, INFN, Torino - UFSD - RD50 CERN 2014 Nicolo Cartiglia.
The University of Tokyo Seiji Miyashita
Activities on straw tube simulation
ELECTROMAGNETIC CANNON
Resonant dipole-dipole energy transfer
Andrew Gomella1,2, S. Yoshii,2 T. Zenmoto,2 M. Yasui,2 M. Hayashi,2 G
Inverse Square Sensitivity
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Alternating Antisymmetric Interaction in Nanoscale Iron Ring
Magnetization processes in V15
Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de.
Hiroyuki Nojiri, Department of Physics, Okayama University
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Magnetization Process of Molecular Magnet in ultra-fast sweeping magnetic fields 1. Introduction to High Field Lab. in Okayama 2. Ultra-fast sweeping magnetic fields 3. Asymmetric Magnetization in V Summary H. Nojiri, Department of Physics, Okayama University

High Field Lab. in Japan High Magnetic Field Forum of Japan IMR, Tohoku NRIM, Tsukuba ISSP, Tokyo Osaka Okayama Kobe Osaka-p Hiroshima Fukui Toyama-p Akita Yamaguchi All Japan group for high magnetic field researchers Bridge between facilities and users Exchange of science and technology Future Plan

Collaborators Okayama University T. Taniguchi Humboldt UniversityA. Kirste, M. von Ortenberg Kyushu University Y. Ajiro Nagoya University K. Awaga Hokkaido University K. Takeda LLN B. Barbara U. G.A. Mueller Acknowledgment Y. Matsuda, Y. Ueda for “ mini-dog ”

Pulsed High Field ESR System High Resolution Excitation at q=0 High Sensitive High Resolution Excitation at q=0 High Sensitive Faraday H//k Voigt H  k Source Optical pumped FIR laser Gunn Oscillator BWO tube Source Optical pumped FIR laser Gunn Oscillator BWO tube

Pulsed High Field ESR System at Okayama 35 GHz-7 THz – meV K 40 T pulsed fields (Single shot)

 -fixed Transmission T(H) Magnetic dipole transition (  S z =±1)  -fixed Transmission T(H) Magnetic dipole transition (  S z =±1) Mn12 Cluster S=10 Splitting by Anisotropy 20 transitions(  S z =±1) ⇩ Mn12 Cluster S=10 Splitting by Anisotropy 20 transitions(  S z =±1) ⇩

Repeating Pulsed Field Generators Pulse width~1 msec Repetition rate 0.5 Hz Water cool Bitter Magnet Bore 30 mm (R.T.) Solenoid Coil 30 T Split Coil 20 T developed and used for  SR and neutron diffraction

Repeating Pulsed Fields THz-ESR S/N improves more than one-order Compatible with tunability Broad signal can be measured

Mini pulsed field system Small energy (1 W for 1Hz-repetition) Cooling with a mechanical cooler Low voltage<1000 V Mobile Customized for each port

Mobile pulsed field-High Field Circus Prototype for 40 T generation 1 M ¥ (1Euro~125 ¥ )

Pulsed Field Control for Spin Dynamics Spin Relaxation in nano-scale magnet –Quantum Tunneling for Small Ferro-magnet –Discrete Level –Non-adiabatic transition –H is in the Hamiltonian and tunable! Control of Time Structure H

Pulse field- Sinusoidal C=8 mF~800  F L=50  H~ 10 mH Velocity 0~10 5 T/s at 1 Tesla Charge voltage (Fine control) + Combination of L&C B (T) time (s) Method I:Combination of L and C

Initial field +fast sweep –Polarize spin in equilibrium state Crossing at zero field No switching noise –No polarization change of current Sweep around a critical field Method II:Two coils

Experimental set up Capacitor Bank 1 90 kJ ODOGONE Compensation Amp. Digitizer Capacitor Bank 2 2 kJ Minidog Control 1 Delay Control 2 Trigger A B C A: Magnet coil 1 B : Magnet coil 2C : pick up coil dH/dt dM/dt Cryostat

Capacitor banks and Magnets Capacitor Bank 2 (Minidog) Capacitor Bank 1 (ODOGONE) Magnet (Mini) Magnet (Normal)

Mini Magnet / pickup coil 部分 5 mm 4.5 mm 2.75 mm 20 mm2 mm or 5mm ステンレ ス ケーブル Magnet(Mini) 銅線 φ 1mm 4 layer Pick up coil Cu wire φ0.07 mm sample Pickup coil カプトンチューブ 磁化検出コイル 補償コイル 磁場コイル

Example of Magnetization Mn12bz//a T~2 K ~0.5 mg

Ultra-fast discharge 5×10 8 T/s Ultra-strong magnetic field ~300 T Limited sensitivity and large noise Method III:Single turn coils

Fast sweep ~10 7 T/s Limited Sensitivity Enhancement in dM/dH Low-temperature Test with Ni powder (~0.2 emu)

Basic properties of Mn 12 Bz [Mn 12 O 12 (O 2 CC 6 H 5 ) 16 (H 2 O) 4 ] 2C 6 H 5 CO 2 H No tetragonal symmetry of molecule Mn(7)-O(6) 1.98 Mn(3)-O(3) 1.90 Mn(7)-O(14) 2.08 Mn(3)-O(7) 1.93 Mn(7)-O(18) 1.93 Mn(3)-O(19) 2.10 Energy Barrier  E=38 K  E ~66 K

3 mg(~0.03 emu) of Mn12 bz (M=3204) c.f. V15 10 mg Reproducible data for high dM/dH Mn 12 bz at 4.2 K

3 mg(~0.03 emu) of Mn12 bz (M=3204) c.f. V15 10 mg Large hysteresis for the first sweep Mn 12 bz at 2 K

Pulsed Field Magnetization:Sweep speed-dependence Hysteresis and the jump of magnetization decrease in cycling probably for temperature increase H

Asymmetric Magnetization for Hidden double degeneracy in V15 Y. Ajiro et al.

V15:K 6 [V 15 As 6 O 42 (H 2 O)] 8H 2 O Saito and Miyashita Chiorescu et al.

Double degeneracy for time reversal symmetry Hexagon site, singlet, large gap Triangle site, S=1/2+S=3/2 S=1/2 is doubly degenerated  ~3 K Tunneling gap~0.1 K  S=3/2 S=1/2 Doubly degenerated for time reversal symmetry

Temperature dependence Decrease of saturation magnetization below 3 K Hysteresis appears below 1 K Jump occurs at level crossing point

Magnetization Hysteresis Small jump in up-sweep Large jump in down-sweep Thermalization after the jump

Sweep field and Maximum field dependence Maximum Field Magnetization curve changes Thermalization time ~ 1 msec Jump is bigger for faster sweep

Sweep field dependence of magnetization jump For low sweep, low maximum field thermalization is insufficient Around 10 4 T/s, the ratio is about 2:1

Summary and Future Time structure control becomes possible by using pulsed fields Sweep rate 10 7 T/s Zero field cross without noise Mn12 avalanche magnetization reversal Asymmetric Magnetization in V 15 3 He and dilution in ultra-fast sweep in progress