Average Arithmetic and Average Quadratic Deviation.

Slides:



Advertisements
Similar presentations
Descriptive Measures MARE 250 Dr. Jason Turner.
Advertisements

Statistical Analysis and Data Interpretation What is significant for the athlete, the statistician and team doctor? important Will Hopkins
ADVANCED STATISTICS FOR MEDICAL STUDIES Mwarumba Mwavita, Ph.D. School of Educational Studies Research Evaluation Measurement and Statistics (REMS) Oklahoma.
Estimation of authenticity of results of statistical research (part I)
Calculating & Reporting Healthcare Statistics
Analysis of Research Data
Edpsy 511 Homework 1: Due 2/6.
1 EXPLORING PSYCHOLOGY (7th Edition) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, © 2008.
Business Research Methods William G. Zikmund Chapter 17: Determination of Sample Size.
Exploring Marketing Research William G. Zikmund
Multiple Choice Questions for discussion
Statistics. Question Tell whether the following statement is true or false: Nominal measurement is the ranking of objects based on their relative standing.
Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Chapter 16 Descriptive Statistics.
Numerical Descriptive Techniques
6.1 What is Statistics? Definition: Statistics – science of collecting, analyzing, and interpreting data in such a way that the conclusions can be objectively.
1.3 Psychology Statistics AP Psychology Mr. Loomis.
Graphic representations in statistics
Average values. Measures of Association n Absolute risk -The relative risk and odds ratio provide a measure of risk compared with a standard. n Attributable.
Psychology’s Statistics Statistical Methods. Statistics  The overall purpose of statistics is to make to organize and make data more meaningful.  Ex.
Business Research Methods William G. Zikmund Chapter 17: Determination of Sample Size.
Estimation of authenticity of results of statistical research.
Graphic representations in statistics. Graphic representation and graphic analysis n Graphic representations are used for evident representation of statistical.
Instrumentation (cont.) February 28 Note: Measurement Plan Due Next Week.
M07-Numerical Summaries 1 1  Department of ISM, University of Alabama, Lesson Objectives  Learn when each measure of a “typical value” is appropriate.
Organization of statistical investigation. Medical Statistics Commonly the word statistics means the arranging of data into charts, tables, and graphs.
Skewness & Kurtosis: Reference
Estimation of authenticity of results of statistical research (part II)
Statistical analysis Outline that error bars are a graphical representation of the variability of data. The knowledge that any individual measurement.
Measures of central tendency are statistics that express the most typical or average scores in a distribution These measures are: The Mode The Median.
Dynamic lines. Measures of Association n Absolute risk -The relative risk and odds ratio provide a measure of risk compared with a standard. n Attributable.
NORMAL DISTRIBUTION Normal curve Smooth, Bell shaped, bilaterally symmetrical curve Total area is =1 Mean is 0 Standard deviation=1 Mean, median, mode.
What does Statistics Mean? Descriptive statistics –Number of people –Trends in employment –Data Inferential statistics –Make an inference about a population.
FREQUANCY DISTRIBUTION 8, 24, 18, 5, 6, 12, 4, 3, 3, 2, 3, 23, 9, 18, 16, 1, 2, 3, 5, 11, 13, 15, 9, 11, 11, 7, 10, 6, 5, 16, 20, 4, 3, 3, 3, 10, 3, 2,
LECTURE CENTRAL TENDENCIES & DISPERSION POSTGRADUATE METHODOLOGY COURSE.
Relative Values. Statistical Terms n Mean:  the average of the data  sensitive to outlying data n Median:  the middle of the data  not sensitive to.
PCB 3043L - General Ecology Data Analysis. PCB 3043L - General Ecology Data Analysis.
Summarizing Risk Analysis Results To quantify the risk of an output variable, 3 properties must be estimated: A measure of central tendency (e.g. µ ) A.
Authenticity of results of statistical research. The Normal Distribution n Mean = median = mode n Skew is zero n 68% of values fall between 1 SD n 95%
Edpsy 511 Exploratory Data Analysis Homework 1: Due 9/19.
Organization of statistical research. The role of Biostatisticians Biostatisticians play essential roles in designing studies, analyzing data and.
IMPORTANCE OF STATISTICS MR.CHITHRAVEL.V ASST.PROFESSOR ACN.
Average Arithmetic and Average Quadratic Deviation.
Quality Control: Analysis Of Data Pawan Angra MS Division of Laboratory Systems Public Health Practice Program Office Centers for Disease Control and.
Average values and their types. Averages n Averages are widely used for comparison in time, that allows to characterize the major conformities to the.
BIOSTATISTICS Lecture 2. The role of Biostatisticians Biostatisticians play essential roles in designing studies, analyzing data and creating methods.
Estimation of authenticity of results of statistical research.
Measurements and Their Analysis. Introduction Note that in this chapter, we are talking about multiple measurements of the same quantity Numerical analysis.
Measuring of Correlation. Definition Correlation is a measure of mutual correspondence between two variables and is denoted by the coefficient of correlation.
Statistics Josée L. Jarry, Ph.D., C.Psych. Introduction to Psychology Department of Psychology University of Toronto June 9, 2003.
Chapter 6: Descriptive Statistics. Learning Objectives Describe statistical measures used in descriptive statistics Compute measures of central tendency.
Descriptive Statistics Dr.Ladish Krishnan Sr.Lecturer of Community Medicine AIMST.
Direct method of standardization of indices. Average Values n Mean:  the average of the data  sensitive to outlying data n Median:  the middle of the.
NURS 306, Nursing Research Lisa Broughton, MSN, RN, CCRN RESEARCH STATISTICS.
PCB 3043L - General Ecology Data Analysis Organizing an ecological study What is the aim of the study? What is the main question being asked? What are.
AP PSYCHOLOGY: UNIT I Introductory Psychology: Statistical Analysis The use of mathematics to organize, summarize and interpret numerical data.
Chapter 11 Summarizing & Reporting Descriptive Data.
Relative values and their types
Introductory Psychology: Statistical Analysis
Statistical analysis.
Average Arithmetic and Average Quadratic Deviation
Variety of characteristic
Measuring of Correlation
Statistical analysis.
Direct method of standardization of indices
Relative Values.
APPROACHES TO QUANTITATIVE DATA ANALYSIS
Graphic representations in statistics
NURS 790: Methods for Research and Evidence Based Practice
Numerical Descriptive Measures
Numerical Descriptive Measures
Presentation transcript:

Average Arithmetic and Average Quadratic Deviation

n The average values, which give the generalized quantitative description of certain characteristic in statistical totality at the certain terms of place and time, are the most widespread form of statistical indices. They represent the typical lines of variation characteristic of the explored phenomena.

Average Arithmetic and Average Quadratic Deviation n Because of that quantitative description of characteristic is related to its high-quality side, it follows to examine average values only in light of terms of high-quality analysis. Except of summarizing estimation of certain characteristic the necessity of determination of changeable quantitative average values for the totality arises up also, when two groups which high-quality differ one from other are compared.

The use of averages in health protection n for description of work organization of health protection establishments (middle employment of bed, term of stay in permanent establishment, amount of visits on one habitant and other);

The use of averages in health protection n for description of indices of physical development (length, mass of body, circumference of head of new-born and other);

The use of averages in health protection n for determination of medical-physiology indices of organism (frequency of pulse, breathing, level of arterial pressure and other);

The use of averages in health protection n for estimation of these medical-social and sanitary-hygienic researches (middle number of laboratory researches, middle norms of food ration, level of radiation contamination and others).

Averages n Averages are widely used for comparison in time, that allows to characterize the major conformities to the law of development of the phenomenon. So, for example, conformity to the law of growth increase of certain age children finds the expression in the generalized indices of physical development. Conformities to the law of dynamics (increase or diminishment) of pulse rate, breathing, clinical parameters at the certain diseases find the display in statistical indices which represent the physiology parameters of organism and other.

Average Values n Mean:  the average of the data  sensitive to outlying data n Median:  the middle of the data  not sensitive to outlying data n Mode:  most commonly occurring value n Range:  the difference between the largest observation and the smallest n Interquartile range:  the spread of the data  commonly used for skewed data n Standard deviation:  a single number which measures how much the observations vary around the mean n Symmetrical data:  data that follows normal distribution  (mean=median=mode)  report mean & standard deviation & n n Skewed data:  not normally distributed  (mean  median  mode)  report median & IQ Range

Average Values n Limit is it is the meaning of edge variant in a variation row lim = Vmin Vmax

Average Values n Amplitude is the difference of edge variant of variation row Am = Vmax - Vmin

Average Values n Average quadratic deviation characterizes dispersion of the variants around an ordinary value (inside structure of totalities).

Average quadratic deviation σ = simple arithmetical method

Average quadratic deviation d = V - M genuine declination of variants from the true middle arithmetic

Average quadratic deviation σ = i method of moments

Average quadratic deviation is needed for: 1. Estimations of typicalness of the middle arithmetic (М is typical for this row, if σ is less than 1/3 of average) value. 2. Getting the error of average value. 3. Determination of average norm of the phenomenon, which is studied (М±1σ), sub norm (М±2σ) and edge deviations (М±3σ). 4. For construction of sigmal net at the estimation of physical development of an individual.

Average quadratic deviation This dispersion a variant around of average characterizes an average quadratic deviation (  )

n Coefficient of variation is the relative measure of variety; it is a percent correlation of standard deviation and arithmetic average.

Terms Used To Describe The Quality Of Measurements n Reliability is variability between subjects divided by inter-subject variability plus measurement error. n Validity refers to the extent to which a test or surrogate is measuring what we think it is measuring.

Measures Of Diagnostic Test Accuracy n Sensitivity is defined as the ability of the test to identify correctly those who have the disease. n Specificity is defined as the ability of the test to identify correctly those who do not have the disease. n Predictive values are important for assessing how useful a test will be in the clinical setting at the individual patient level. The positive predictive value is the probability of disease in a patient with a positive test. Conversely, the negative predictive value is the probability that the patient does not have disease if he has a negative test result. n Likelihood ratio indicates how much a given diagnostic test result will raise or lower the odds of having a disease relative to the prior probability of disease.

Measures Of Diagnostic Test Accuracy

Expressions Used When Making Inferences About Data n Confidence Intervals -The results of any study sample are an estimate of the true value in the entire population. The true value may actually be greater or less than what is observed. n Type I error (alpha) is the probability of incorrectly concluding there is a statistically significant difference in the population when none exists. n Type II error (beta) is the probability of incorrectly concluding that there is no statistically significant difference in a population when one exists. n Power is a measure of the ability of a study to detect a true difference.

Multivariable Regression Methods n Multiple linear regression is used when the outcome data is a continuous variable such as weight. For example, one could estimate the effect of a diet on weight after adjusting for the effect of confounders such as smoking status. n Logistic regression is used when the outcome data is binary such as cure or no cure. Logistic regression can be used to estimate the effect of an exposure on a binary outcome after adjusting for confounders.

Survival Analysis n Kaplan-Meier analysis measures the ratio of surviving subjects (or those without an event) divided by the total number of subjects at risk for the event. Every time a subject has an event, the ratio is recalculated. These ratios are then used to generate a curve to graphically depict the probability of survival. n Cox proportional hazards analysis is similar to the logistic regression method described above with the added advantage that it accounts for time to a binary event in the outcome variable. Thus, one can account for variation in follow-up time among subjects.

Kaplan-Meier Survival Curves

Why Use Statistics?

Descriptive Statistics n Identifies patterns in the data n Identifies outliers n Guides choice of statistical test

Percentage of Specimens Testing Positive for RSV ( respiratory syncytial virus)

Descriptive Statistics

Distribution of Course Grades

Describing the Data with Numbers Measures of Dispersion RANGE STANDARD DEVIATION SKEWNESS

Measures of Dispersion RANGE highest to lowest values STANDARD DEVIATION how closely do values cluster around the mean value SKEWNESS refers to symmetry of curve

Measures of Dispersion RANGE highest to lowest values STANDARD DEVIATION how closely do values cluster around the mean value SKEWNESS refers to symmetry of curve

Measures of Dispersion RANGE highest to lowest values STANDARD DEVIATION how closely do values cluster around the mean value SKEWNESS refers to symmetry of curve

The Normal Distribution n Mean = median = mode n Skew is zero n 68% of values fall between 1 SD n 95% of values fall between 2 SDs. Mean, Median, Mode 11 22