Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN2004 2004/10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,

Slides:



Advertisements
Similar presentations
Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Advertisements

Ra-225: The Path to a Next Generation EDM Experiment
Search for the Schiff Moment of Radium-225
HATTIE RING PRESENTATION FOR PHYS 250 4/22/2008 Magnetometry.
The electron EDM search in solid ferroelectric Eu 0.5 Ba 0.5 TiO 3 Alex Sushkov Steve EckelSteve Lamoreaux.
1 Test of fundamental symmetries Sumerian, 2600 B.C. (British Museum) With thanks to Antoine Weis from an atomic physics perspective Mike Tarbutt.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
Nonlinear Magneto-Optical Rotation with Frequency-Modulated Light Derek Kimball Dmitry Budker Simon Rochester Valeriy Yashchuk Max Zolotorev and many others...
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
Weak Interactions in the Nucleus III Summer School, Tennessee June 2003.
Study of the Time-Reversal Violation with neutrons
1 Neutron Electric Dipole Moment Experiment Jen-Chieh Peng International Workshop on “High Energy Physics in the LHC Era” Valparaiso, Chile, December 11-15,
Nonlinear Magneto-Optical Rotation with Frequency-Modulated Light Derek Kimball Dmitry Budker Simon Rochester Valeriy Yashchuk Max Zolotorev and many others...
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Histogram of Blinded eEDM Data Number of Measurements T-Statistic of Blinded eEDM Measurements Order of Magnitude Smaller Limit on the Electric Dipole.
SPIN 2004 Oct. 14, 2004 W. Kim, S.S. Stepanyan, S. Woo, M. Rasulbaev, S. Jin (Kyungpook National University) S. Korea Polarization Measurements of the.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
T. Inoue, 1 T. Nanao,1 M. Tsuchiya, 1 H. Hayashi, 1 T. Furukawa, 1 A. Yoshimi, 2 M. Uchida, 1 H. Ueno, 2 Y. Matsuo, 2 T. Fukuyama, 3 and K. Asahi 1 1 Tokyo.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Electric Dipole Moment of Neutron and Neutrinos
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
The QED Vacuum Magnetic Birefringence (BMV) Experiment
Search for an Atomic EDM with
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
A Portable Ultrasensitive SERF Atomic Magnetometer for Biomagnetic Measurements R Wyllie, 1 Z Li, 2 R Wakai, 3 N Proite, 1 P Cook, 1 T Walker 1 1 – Department.
Magnetic/Electric Fields for KEK-RCNP EDM Experiment K. Matsuta(Osaka), Y. Masuda(KEK), Y. Watanabe(KEK), S.C. Jeong(KEK), K. Hatanaka(RCNP), R. Matsumiya.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
3 He Polarization Tests at UIUC Danielle Chandler David Howell UIUC.
Free Electron Lasers (I)
Progress of the Laser Spectroscopy Program at Bridgewater State College Greg Surman, Brian Keith, and Edward Deveney Department of Physics, Bridgewater.
129 Xe 原子 EDM の探索実験について 吉見 彰洋 理研・応用原子核物理研 東工大.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Low–field NMR (or MRI) Images of Laser polarized Noble Gas.
PRINCIPLE OF THE EXPERIMENT PRESENT RESULTS see Ref.(5) E 1 PV: : PV E 1 6S-7S amplitude interferes with  E z : Stark induced E 1 amplitude POLARIMETRIC.
129 Xe magnetometry for KEK-RCNP neutron EDM measurements M. Mihara, K. Matsuta (Osaka Univ.) Y. Masuda, S.C. Jeong, Y.X. Watanabe, S. Kawasaki (KEK) K.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
2007/11/02nEDM BOSTON1 Dressing Field Study Pinghan Chu University of Illinois at Urbana-Champaign nEDM Collaboration Boston Dressed.
Possible measurement of electron EDM in atoms with spatially alternating electric field T. Haseyama RIKEN, Japan ( The Institute of Physical and Chemical.
Introduction to materials physics #4
Parity nonconservation in the 6s 2 1 S 0 – 6s5d 3 D 1 transition in Atomic Ytterbium: status of the Berkeley experiments K. Tsigutkin, J. Stalnaker, V.
Atomic Sensors Research University of Wisconsin-Madison Thad Walker Anna Korver Dan Thrasher Mike Bulatowicz.
Study of T 1 relaxation time A proposal to test T 1 using a dilution fridge and SQUID NMA at Royal Hollow University,London.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
Transverse Measurements of Polarization in Optically-Pumped Rb Vapor Cells J.M. Dreiling 1, E.B. Norrgard 1 *, D. Tupa 2, and T.J. Gay 1 1 University of.
R Wyllie, R Wakai, T G Walker University of Wisconsin, Madison Spin-Exchange Relaxation Free Heart signal frequency spectrum from DC-100Hz Adult heart.
Anna Korver, Dan Thrasher, and Thad Walker Northrop-Grumman Review September
A Portable Ultrasensitive SERF Atomic Magnetometer for Biomagnetic Measurements R Wyllie, 1 Z Li, 2 R Wakai, 3 N Proite, 1 P Cook, 1 T Walker 1 1 – Department.
Kerr Effect-based Measurement of the Electric Field
Electric Dipole Moment Searches in Nuclei, Atoms, and Molecules Dave Kawall - RIKEN BNL Research Center and UMass D S RBRC Symposium, BNL, June 19th, 2006.
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
APV Anapole Moment in Yb (status) and Some Other Topics in Atomic Parity Violation Dmitry Budker University of California, Berkeley Nuclear Science Division,
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
 The electron electric dipole moment (eEDM) is aligned with the spin and interacts with the giant (~84 GV/cm) effective internal electric field of the.
Possibilities to study physics beyond the standard model in solid state experiments. Oleg P. Sushkov Max-Planck Institute for Solid State Research, Stuttgart.
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Resonant magneto-optical effects in atoms
Electric Dipole Moments: Searches at Storage Rings
Electric Dipole Moments: Searches at Storage Rings
electric dipole moments (EDM)
Presentation transcript:

Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor, Tokyo Inst. of Tech./RIKEN) S. Emori (Tokyo Inst. of Tech.) S. Oshima (Tokyo Inst. of Tech.)

Electric Dipole Moment d  0 T-violation CP-violation Non-zero EDM associated with spin Direct evidence of violation of time reversal symmetry s s Time reversal Time : t -t Spin : s -s EDM : d d CPT theorem Standard Model (SM) : Predicted EDM is about 10 5 smaller than the present experimental upper limit Beyond the SM : Detectable EDM Detection of non-zero EDM CP-violation beyond the standard model

Recent EDM experiment of diamagnetic atoms Vold et. al., Phys. Rev. Lett. 52 (1984) Rosenberry and Chupp, Phys. Rev. Lett. 86 (2001) Lamoreaux et. al., Phys. Rev. Lett. 59 (1987) Romalis et. al., Phys. Rev. Lett. 86 (2001) Operation of continuous spin maser One shot measurement … 2000 sec. Repetition of FID measurement …. 300 – 500 sec/1run

Supersymmetric modelStandard model EDM theory Present experimental upper limit T. Falk et al., hep-ph/ Upper limit of CP-violating complex phases in Supersymmetric model M=250GeV M=500GeV (O.P. Sushkov et al., JETP 60 (1984) 873) Energy scale of superpartner (T. Falk et al., hep-ph/ )

Project of atomic EDM experiment of 129 Xe at RIKEN-TIT Continuous nuclear spin maser Free Induction DecayContinuous oscillation Large polarization of Xe nucleus Spin exchange with optical pumped Rb atom Nuclear polarization O(10) 100 torr (10 18 /cc) 129 Xe Rb Rapid decrease of frequency precision Spin maser at low frequency Low static field experiment (  mG )  Small field fluctuation Use of the ultra high sensitive magnetometer

Spin MASER Polarization vector : M Feedback field : B fb B0B0 Feedback torque Relaxation, pumping T2 relaxation Polarization’s growing (pumping effect) Feedback torque pump Feedback system Zeeman level Transverse magnetic field - synchronism with spin precession - Phase : perpendicular to the transverse polarization Amplitude : proportional to the transverse polarization Population inversion Feedback EM-field synchronism with emitted photon Polarization

Induced current C B0B0 L I  nPQ B FB Pumping light Spin maser with the tuned coil of tank circuit NMR-based spin maser > kHz (B 0 = 1 G) Oscillation threshold Artificial feedback through the optical spin detection Operation at low magnetic field Small field fluctuation High-sensitive magnetometer Long intrinsic T 2 Optical-detection-feedback spin maser B 0  mG Probe laser beam Pumping laser beam Lock-in detection Phase shifter Photo diode Feedback coil Nuclear spin M. Richards et al., J. Phys. B 21 (1988) 665. T. Chupp et al., PRL 72 (1994) A. Yoshimi et al., PLA 304 (2002) 13.

Experimental apparatus Enriched 129 Xe : 230 torr Rb : ~ 1 mg P xe ~ 10 % 18 mm Xe gas cell Pyrex spherical grass cell SurfaSil coated Magnetic shield (3 layers ) Parmalloy Size : l = 100 cm, d = 36, 42, 48 cm Shielding factor : S = 10 3 Pumping LASER Tunable diode laser = nm ( Rb D1 line ),  = 3 nm Output: 18 W Probe LASER tunable diode laser with external cavity  = nm ( Rb D1 line ),  = nm Output: 15 mW Solenoid coil (for static field) B 0 = 28.3 mG ( I = 3.58 mA) PEM Mod. Freq. 50 kHz Si photo diode Freq. band width: 0 – 500 kHz NEP: 8  W/Hz Heater T cell = 60 ~ 70 ℃

Typical maser oscillation signal B 0 = 28.3 mG, ref = Hz, feedback gain : 18  G/0.1mV Feedback system ON Steady state oscillation Measured frequency : Signal (mV) Time (s) (  84 hours) Signal (V) Time (s)

Frequency characteristics Fourie spectrum ( 1 hr. run ) Conventional spin maser ( = 3.56 kHz ) Low-frequency spin maser ( = 33.5 Hz ) t (sec)  (rad)  = 0.96  Hz =  mHz    -3/2 Frequency precision (  Hz) Time (s) Precession angle

On-going developments 1 – magnetometer - Fluctuation of magnetic field  Main source of frequency noise in spin maser operation Neutron EDM experiment….. Hg atomic magnetometer Xe EDM Michigan Gr. ….. 3 He co-magnetometer k Linear polarized light Alkali vapor Faraday rotation B 1×10 4 rad/G, 4× G/  Hz (B < 0.1G) Atomic magnetometer with Rb using magneto-optical rotation D. Budker et al., PRA 62 (2000) calibration run

On-going developments 2 – magnetic shield - Construction of 4-layer shield l = 1600 mm, R =  400 mm Transverse: S ≈10 6 Longitudinal: S ≈10 4 Estimated shielding factor Measured residual field z (cm) Field (  G) longitudinal transverse Shielding factor : S ≈10 4

Installation of atomic magnetometer into low frequency spin oscillator sensitivity :  G/  Hz   B  G (  (Xe)  0.1 nHz ) Main source of frequency noise interaction with Rb atomic spins (10 9 /cc) P(Rb)  0.01 % ( re-polarization from Xe )   (Xe)  0.2 nHz (  T  0.01˚C) Estimation of experimental EDM-sensitivity  Probe light (Magnetometer) (E=10kV/cm) Conceptual setup Estimation of frequency precision Precision (  Hz ) Time (s)

Summary and Future Construction of the nuclear spin maser with an artificial feedback system, and operated it at low frequency 33 Hz ( under B = 28 mG ). Frequency precision of 1 contiguous measurement presently reaches to 1  Hz. (without magnetometer/free-running) Construction of 4-layer magnetic shield. Installing the Rb magnetometer with magneto-optical rotation. Aiming at search for the atomic electric dipole moment in Xe ; d(Xe) =  ecm.