Silicon 2010, N. Novgorod >09.07.2010 Folie 1 Relaxation of intracenter excitations in monoisotopic 28 Si:P S.G. Pavlov 1, S.A. Lynch 2, P.T. Greenland.

Slides:



Advertisements
Similar presentations
WZI seminar Si nanocrystals as sensitizers for Er 3+ PL in SiO 2 M. Wojdak Van der Waals - Zeeman Institute, University of Amsterdam Valckenierstraat.
Advertisements

Size-dependent recombination dynamics in ZnO nanowires
First Year Seminar: Strontium Project
Optical properties of infrared emission quaternary InGaAsP epilayers Y. C. Lee a,b, J. L. Shen a, and W. Y. Uen b a. Department of Computer Science and.
X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Ultraviolet photoelectron spectroscopy (UPS)
Semiconductor Device Physics
V.N. Shastin 1, R.Kh. Zhukavin 1, K.A. Kovalevsky 1, V.V. Tsyplenkov 1, S.G. Pavlov 2, H.-W. Hübers 2. N.V. Abrosimov 3, H. Riemann 3 1 Institute for Physics.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
Saturated gain in GaN epilayers studied by variable stripe length technique Rui Li Journal Club, Electrical Engineering Boston University J. Mickevičiusa.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
Normalized plot of n 0 /N D as a function of temperature. This plot is for N D = cm  3. Figure
( Infrared Spectroscopy IR (FTIR) Leonid Murin 1,2 1 Joint Institute of Solid State and Semiconductor Physics, Minsk, Belarus 2 Oslo University, Centre.
___________________________________________ Group meeting, Feb _____________________________________________ Manuel Forcales.
Lecture #3 OUTLINE Band gap energy Density of states Doping Read: Chapter 2 (Section 2.3)
An Introduction to Semiconductor Materials
1 Femtosecond Time and Angle-Resolved Photoelectron Spectroscopy of Aqueous Solutions Toshinori Suzuki Kyoto University photoelectron.
Growth and Characterization of IV-VI Semiconductor Multiple Quantum Well Structures Patrick J. McCann, Huizhen Wu, and Ning Dai* School of Electrical and.
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
ITOH Lab. Hiroaki SAWADA
A photoluminescence study of Cd, In and Sn in ZnO using radioisotopes Joseph Cullen, Martin Henry, Enda McGlynn Dublin City University Karl Johnston Universitat.
Pump-Probe Photoionization & Mass Spectroscopy of Pentamethylcyclopentadiene Fedor Rudakov Peter Weber Molecular Spectroscopy June 21, 2007.
1) Prof. Timofeev N. A. (Department of Optics and Spectroscopy, St. Petersburg University, St. Petersburg , Russia) Opening speech Optics.
Evidence of Radiational Transitions in the Triplet Manifold of Large Molecules Haifeng Xu, Philip Johnson Stony Brook University Trevor Sears Brookhaven.
The contribution from The contribution from photoluminescence (PL) Gordon Davies, King’s College London.
Alexandr A. Ezhevskii *, Andrey V. Soukhorukov *, Davud V. Guseinov *, Sergey A. Popkov *, Anatoliy V. Gusev †, Vladimir A. Gavva † 1 Department of Physics,
Oxygen Atom Recombination in the Presence of Singlet Molecular Oxygen Michael Heaven Department of Chemistry Emory University, USA Valeriy Azyazov P.N.
In-situ Photolysis of Methyl Iodide in Solid Para-hydrogen and Solid Ortho-deuterium Yuki Miyamoto 1, Mizuho Fushitani 2, Hiromichi Hoshina 3, and Takamasa.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Spectrumbeat signal characteristics of the used diode lasers for transversal cooling and trapping For stabilizing the diode lasers we use the mean of saturation.
Barbara Surma, Paweł Kamiński, Artur Wnuk and Roman Kozłowski
Long-Lived Dilute Photocarriers in Individualy-suspended Single-Walled Carbon Nanotubes Y. Hashimoto, A. Srivastava, J. Shaver, G. N. Ostojic, S. Zaric,
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Vacancy defect detection and characterization in SrTiO 3 thin films by positron lifetime spectroscopy David J. Keeble Carnegie Laboratory of Physics, University.
Magnetization dynamics
Plasma diagnostics using spectroscopic techniques
By Squadron Leader Zahid Mir CS&IT Department, Superior University PHY-BE -03 Semiconductors (Continued)
Recent related paper: Solid State Phenomena, (2011) 313 Positron Annihilation on Point Defects in n-FZ –Si:P Single Crystals Irradiated With 15.
High Resolution optical spectroscopy in isotopically-pure Si using radioactive isotopes: towards a re-evaluation of deep centres Mike Thewalt 1, Karl Johnston.
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
BASIC ELECTRONICS Module 1 Introduction to Semiconductors
Laser Treated Metallic Probes for Cancer Treatment in MRI Systems July 08, Advance Materials Processing and Analysis Center (AMPAC) Department of.
Quantum interference phenomenon Quantum interference phenomenon in the cold atomic cascade system $$ : National Science Council and National Space Program.
Xiaozhong Zhang, Xinyu Tan, Lihua Wu, Xin Zhang, Xili Gao, Caihua Wan National Center for Electron Microscopy (Beijing) Laboratory of Advanced Materials.
Refractive Index Enhancement without Absorption N. A. Proite, J. P. Sheehan, J. T. Green, D. E. Sikes, B. E. Unks, and D. D. Yavuz University of Wisconsin,
Slide # 1 Variation of PL with temperature and doping With increase in temperature: –Lattice spacing increases so bandgap reduces, peak shift to higher.
Nanoscale imaging and control of resistance switching in VO 2 at room temperature Jeehoon Kim, Changhyun Ko, Alex Frenzel, Shriram Ramanathan, and Jennifer.
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
SALIENT FEATURES OF SHALLOW DONOR INTERACTIONS IN PROTON-IRRADIATED SILICON V.V. Emtsev and G.A. Oganesyan Ioffe Physicotechnical Institute Russian Academy.
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Lobachevsky State University of Nizhniy Novgorod
Introduction to Electronics
10 th RD 50 Workshop, Vilnius, Analysis of microinhomogeneity of irradiated Si by Hall and magnetoresistance effects J.Vaitkus, A.Mekys, J.Storasta.
Molecular Spectroscopy OSU June TRANSIENT ABSORPTION AND TIME-RESOLVED FLUORESCENCE STUDIES OF SOLVATED RUTHENIUM DI-BIPYRIDINE PSEUDO-HALIDE.
المملكة العربية السعودية وزارة التعليم العالي - جامعة أم القرى كلية الهندسة و العمارة الإسلامية قسم الهندسة الكهربائية ELECTRONIC DEVICES K INGDOM.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Isotopic fingerprints of gold-containing luminescence centers in 28 Si Karl Johnston 1, Mike Thewalt 2, Martin Henry 3 1 ISOLDE/CERN 2 Dept of Physics,
J.Vaitkus, L.Makarenko et all. RD50, CERN, 2012 The free carrier transport properties in proton and neutron irradiated Si(Ge) (and comparison with Si)
Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate.
Terahertz Charge Dynamics in Semiconductors James N. Heyman Macalester College St. Paul, MN.
FAR-IR ACTION SPECTROSCOPY OF AMINOPHENOL AND ETHYLVANILLIN: EXPERIMENT AND THEORY Vasyl Yatsyna, Daniël Bakker*, Raimund Feifel, Vitali Zhaunerchyk, Anouk.
KTH ROYAL INSTITUTE OF TECHNOLOGY Rare earth doped waveguide lasers and amplifiers Dimitri Geskus Department of Materials and Nano Physics KTH - Royal.
Time-Resolved X-ray Absorption Spectroscopy of Warm Dense Matter J.W. Lee 1,2,6, L.J. Bae 1,2, K. Engelhorn 3, B. Barbel 3, P. Heimann 4, Y. Ping 5, A.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
PHYSICAL ELECTRONICS ECX 5239 PRESENTATION 01 PRESENTATION 01 Name : A.T.U.N Senevirathna. Reg, No : Center : Kandy.
IRG-3 Electron Spin Coherence of Shallow Donors in Germanium (DMR )
Excited state characterization of protonated aromatic molecules
G. Tamulaitis, S. Nargelas, A. Vaitkevicius, Vilnius University,
Strong coupling of a superradiant spin ensemble B. C. Rose, A. M
Presentation transcript:

Silicon 2010, N. Novgorod > Folie 1 Relaxation of intracenter excitations in monoisotopic 28 Si:P S.G. Pavlov 1, S.A. Lynch 2, P.T. Greenland 2, K. Litvinenko 3, R. Eichholz 1, V.N. Shastin 4, B. Redlich 5, A.F.G. van der Meer 5, N.V. Abrosimov 6, H. Riemann 6, H.-J. Pohl 7, G. Aeppli 2, B.N. Murdin 3, C.R. Pidgeon 8, and H.-W. Hübers 1,9 1) Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany 2) London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, England 3) Advanced Technology Institute, University of Surrey, Guildford, England 4) Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia 5) FOM-Institute for Plasma Physics, Nieuwegein, The Netherlands 6) Leibniz Institute of Crystal Growth, Berlin, Germany 7) VITCON Projectconsult GmbH, Jena, Germany 8) Department of Physics, Heriot-Watt University Riccarton, Edinburgh, Scotland 9) Institut für Optik und Atomare Physik, Technische Universität Berlin, Germany

Folie 2 Silicon 2010, N. Novgorod > Intracenter electronic relaxation in silicon: basics Recombination of electrons and donors in n-type germanium G. Ascarelli and S. Rodriguez Phys. Rev. 124, 1321, 1961 Cascade capture of electrons in solids M. Lax, Phys. Rev. 119, 1502,.1960 Evidence of noncascade intracenter electron relaxation in shallow donor centers in silicon, S.G. Pavlov, H.-W. Hübers, P.M. Haas, J.N. Hovenier, T.O. Klaassen, R.Kh. Zhukavin, V.N. Shastin, D.A. Carder and B. Redlich, Phys. Rev. B. 78, , Релаксация возбужденных состояний доноров с излучением междолинных фононов- В.В. Цыпленков, Е.В. Демидов, К.А. Ковалевский, В.Н.Шастин, ФТП 42, 1032, 2008.

Folie 3 Silicon 2010, N. Novgorod > Relaxation of individual impurity states in silicon: experiments T*=

Folie 4 Silicon 2010, N. Novgorod > Relaxation of individual impurity states in natural Si:P: experiments Silicon as a model ion trap: Time domain measurements of donor Rydberg states, N.Q. Vinh, P.T. Greenland, K. Litvinenko, B. Redlich, A.F.G. van der Meer, S.A. Lynch, M. Warner, A.M. Stoneham, G. Aeppli, D.J. Paul, C.R. Pidgeon and B.N. Murdin, PNAS 105, 10649, 2008.

Folie 5 Silicon 2010, N. Novgorod > Natural linewidth of impurity transitions in 28 Si:P: HR absorption spectroscopy Shallow impurity absorption spectroscopy in isotopically enriched silicon, M. Steger, A. Yang, D. Karaiskaj, M.L.W. Thewalt, E.E. Haller, J.W. Ager, III, M. Cardona, H. Riemann, N.V. Abrosimov, A.V. Gusev, A.D. Bulanov, A.K. Kaliteevskii, O.N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. B. 79, ,   5.3ps / FWHM (cm -1 ) Natural linewidth of atomic transitions

Folie 6 Silicon 2010, N. Novgorod > Avogadro Project -redefine the kilogram based on the lattice constant and density of 28 Si enrichment: % [P] ~ 5  cm -3 4  cm -3 [B] ~ 5  cm -3 dislocation free Isotopically enriched 28 Si:P.

Folie 7 Silicon 2010, N. Novgorod > Relaxation of individual impurity states in silicon: variation of experimental results

Folie 8 Silicon 2010, N. Novgorod > Relaxation of individual impurity states in silicon: variation of experimental results

Folie 9 Silicon 2010, N. Novgorod > Reason of negative contribution in pump-probe FEL1 (6ps) = 54.4 GHz FEL2 (10ps) = 31.5 GHz Si:P (FTS) = 28.2 GHz

Folie 10 Silicon 2010, N. Novgorod > Reason of negative contribution in pump-probe

Folie 11 Silicon 2010, N. Novgorod >  FEL probe FELIX pump laser Absorption on 2p 0  c.b. transitions delivers negative contribution in probe transmission through sample Different contributions in pump-probe

Folie 12 Silicon 2010, N. Novgorod > Matching FEL and impurity linewidths

Folie 13 Silicon 2010, N. Novgorod > Reduction of negative contribution in pump-probe

Folie 14 Silicon 2010, N. Novgorod > Pumped -probed state FELIX pump laser FEL probe N D (t)=N 1s(A1) (t)+N 2p0 (t)+N 1s(E) +N 1s(T2) if two-step decay dominates: small relative absorbance: c.b. two-exp decay fit must be used where decay rates between states are: w 21 : 2p 0  1s(E,T 2 ) w 10 : 1s(E,T 2 )  1s(A 1 ) + Two-exponential decay as step-like decay of the 2p 0 state

Folie 15 Silicon 2010, N. Novgorod > Two-exponential decay: 28 Si:P (amplitude)

Folie 16 Silicon 2010, N. Novgorod > Two-exponential decay: 28 Si:P (decay constants)

Folie 17 Silicon 2010, N. Novgorod > Two-exponential decay: Si:P (amplitude)

Folie 18 Silicon 2010, N. Novgorod > Two-exponential decay: Si:P (decay constant)

Folie 19 Silicon 2010, N. Novgorod > Optically pumped donor intracenter silicon lasers Phys. Rev. Lett. 84, 5220 (2000) Appl. Phys. Lett. 80, 4717 (2002) J. Appl. Phys. 92, 5632 (2002) Appl. Phys. Lett. 84, 3600 (2004)

Folie 20 Silicon 2010, N. Novgorod > Conclusions: - Decay of the 2p 0 state in Si:P is very likely two-step process - Decay time on the first step (2p 0  1s(E), 1s(T 2 )) is about 200 ps for 28 Si:P and about 150 ps for Si:P - Decay time on the first step (1s(E), 1s(T 2 )  1s(A 1 ) ) is about 50 ps for 28 Si:P and about 50 ps for Si:P - experiments: different doping (done, not yet analyzed) - two-color time-resolved experiments - modeling of relaxation