B.Baret Vrije Univertsiteit Brusse l Vrije Universiteit Brussel, Belgium The AMANDA – IceCube telescopes & Dark Matter searches B. Baret on behalf of the.

Slides:



Advertisements
Similar presentations
UW River Falls, May 15-16, 2003 Searching for Dark Matter Through South Pole Ice Kurt Woschnagg University of California - Berkeley.
Advertisements

Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
AMANDA Lessons Antarctic Muon And Neutrino Detector Array.
The IceCube Neutrino Telescope Kyler Kuehn Center for Cosmology and AstroParticle Physics The Ohio State University Novel Searches for Dark Matter CCAPP.
The IceCube Neutrino Telescope Project overview and Status EHE Physics Example: Detection of GZK neutrinos TAUP2003 Shigeru Yoshida, Chiba University.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
IceCube.
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
Optical Sensor and DAQ in IceCube Albrecht Karle University of Wisconsin-Madison Chiba July, 2003.
The IceCube High Energy Telesope The detector elements Expected Sensitivity Project Status Shigeru Yoshida Dept. of Physics CHIBA Univ. ICRC 2003.
Neutrino Astronomy at the South Pole David Boersma UW Madison “New Views of the Universe” Chicago, 10 December 2005.
IceCube a kilometer-scale deep-ice observatory in Antarctica Olga Botner Uppsala university, Sweden Neutrino 2004, June 14-19, icecube.wisc.edu.
1 IceCube: A Neutrino Telescope at The South Pole Chihwa Song UW-Madison photographed by Mark Krasberg 4 th Korean Astrophysics Workshop May 17-19, 2006.
Per Olof Hulth Stockholm university1 NSF Review March 25-27, 2003 Introductory remarks Per Olof Hulth Stockholm university.
Neutrino Astronomy with AMANDA Steven W. Barwick University of California-Irvine SPIE Conference -Hawaii, 2002.
A km 3 Neutrino Telescope: IceCube at the South Pole Howard Matis - LBNL for the IceCube Collaboration.
PINGU – An IceCube extension for low-energy neutrinos Uli Katz on behalf of the PINGU Collaboration European Strategy for Neutrino Oscillation.
Neutrino astronomy with AMANDA and IceCube Per Olof Hulth Stockholm University
IceCube S Robbins University of Wuppertal Moriond - “Contents and Structures of the Universe” La Thuile, Italy, March 2006 Outlook for Neutrino Detection.
Slide 1 K. Hanson – ICHEP 2002 (Amsterdam) 07/2002 Recent Results from AMANDA II Kael Hanson for the AMANDA Collaboration UNIVERSITY OF WISCONSIN – MADISON.
The next generation of Neutrino telescopes -ICECUBE Design and Performance, Science Potential Albrecht Karle University of Wisconsin-Madison
Frontiers in Contemporary Physics: May 23, 2005 Recent Results From AMANDA and IceCube Jessica Hodges University of Wisconsin – Madison for the IceCube.
AMANDA Results from the AMANDA neutrino telescope Carlos P. de los Heros Department of High Energy Physics Uppsala University.
First Results from IceCube Physics Motivation Hardware Overview Deployment First Results Conclusions & Future Plans Spencer Klein, LBNL for the IceCube.
Neutrino Astronomy at the South Pole David Boersma UW Madison Lake Louise Winter Institute Chicago, 23 February 2006.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
The Status of IceCube Mark Krasberg University of Wisconsin-Madison RICH 2004 Conference, Playa del Carmen, Mexico Dec 3, 2004.
Kara Hoffman, the University of Maryland. the Antarctic Muon and Neutrino Array.
News from the South Pole: Recent Results from the IceCube and AMANDA Neutrino Telescopes Alexander Kappes UW-Madison PANIC ‘08 November 2008, Eilat (Israel)
Searching for Quantum Gravity with AMANDA-II and IceCube John Kelley November 11, 2008 PANIC’08, Eilat, Israel.
COSMO/CosPA 2010 Searches for the Highest Energy Neutrino with IceCube Searches for the Highest Energy Neutrino with IceCube Aya Ishihara ( Fellow) (JSPS.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
C Alexander Kappes for the IceCube Collaboration 23 rd European Cosmic-Ray Symposium Moscow, 7. July 2012 Neutrino astronomy with the IceCube Observatory.
Studies on PINGU’s Sensitivity to the Neutrino mass Hierarchy P. Berghaus, H.P. Bretz, A. Groß, A. Kappes, J. Leute, S. Odrowski, E. Resconi, R. Shanidze.
Aspen Institute for Physics 02 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
IceCube and AMANDA: Neutrino Astronomy at the South Pole Brennan Hughey February 22nd, 2007.
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
1 Jan Conrad (CERN) GLAST Lunch, 09. Mar. 2006, Jan Conrad (KTH) The AMANDA neutrino telescope: Results from GRB and dark matter searches Jan Conrad (KTH,
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
KEK, Feb 27, 2006Tom Gaisser1 Cosmic-ray physics with IceCube IceTop the surface component of IceCube.
XIX European Cosmic Ray Symposium Firenze (Italy) Neutrino Astronomy and Cosmic Rays at the South Pole Latest.
Science Advisory Committee March 30, 2006 Jim Yeck IceCube Project Director IceCube Construction Progress.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
IceCube: Status and Results
IceCube project Shigeru Yoshida Dept. of Physics, Chiba University.
Searching for Quantum Gravity with AMANDA-II and IceCube John Kelley IceCube Collaboration University of Wisconsin, Madison, U.S.A. October 27, 2008 KICP.
Icecube Neutrino Observatory at the South Pole Kirill Filimonov, University of California, Berkeley, for the IceCube Collaboration.
Carlos de los Heros Uppsala University dark matter searches with IceCube IDM2010, Montpellier, July
RICH2002, Pylos, GreeceResults from AMANDA/Allan Hallgren, Uppsala1 Results from the Antarctic Muon and Neutrino Detector Array (AMANDA) **Talk prepared.
Carlos de los Heros Division of High Energy Physics Uppsala University EPS2005 Lisbon, July 21-27, 2005 GETTING THERE: FROM AMANDA TO ICECUBE.
I Taboada, GA Tech High-energy neutrino astronomy with IceCube Ignacio Taboada Georgia Institute of Technology for the IceCube collaboration Madison, NDM.
IceCube: A km-scale Detector David Nygren, LBNL ISVHECRI 6-12 September 2004.
1 Particles and Nuclei International Conference (PANIC05) Santa Fe, NM (U.S.A.) October 24 th, from Quark n.36, 02/01/04 Neutrino.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
1 slide Brennan Hughey University of Wisconsin – Madison for the AMANDA Collaboration Recent Results From the AMANDA Experiment Rencontres du Vietnam August.
IceCube Neutrino Telescope Astroparticle Physics at the South Pole Brendan Fox Pennsylvania State University for the IceCube Collaboration VLVNT08 - Very.
Search for Ultra-High Energy Tau Neutrinos in IceCube Dawn Williams University of Alabama For the IceCube Collaboration The 12 th International Workshop.
High-energy Neutrino Astrophysics with IceCube Neutrino Observatory
Dark Matter Searches with AMANDA and IceCube Catherine De Clercq for the IceCube Collaboration Vrije Universiteit Brussel Interuniversity Institute for.
1 IceCube Christian Spiering for the IceCube Collaboration EPSC, Cracow July 2009.
Imaging the Neutrino Universe with AMANDA and IceCube
Julia Becker for the IceCube collaboration
Imaging the High-Energy Neutrino Universe from the South Pole
IceCube Neutrino Telescope Astroparticle Physics at the South Pole
Status and prospects of the IceCube Neutrino Telescope
The IceCube Neutrino Telescope
Presentation transcript:

B.Baret Vrije Univertsiteit Brusse l Vrije Universiteit Brussel, Belgium The AMANDA – IceCube telescopes & Dark Matter searches B. Baret on behalf of the IceCube collaboration 6 th Cracow Epiphany Conference

B.Baret Vrije Univertsiteit Brusse l Physics Motivations and Goals AMANDA IceCube Attractive astronomical messengers: Transparent Universe (≠  ) Travel in straight line (≠p) Produced in hadronic accelerators ? Study of: Sources: AGNs, SNRs, GRBs... -physics (atmospheric production): Oscillations, cross-sections.. “new” physics: WIMPS, decoherence, monopoles...

B.Baret Vrije Univertsiteit Brusse l The IceCube collaboration USA: Bartol Research Institute, Delaware Univ. of Alabama Pennsylvania State University UC Berkeley UC Irvine Clark-Atlanta University Univ. of Maryland IAS, Princeton University of Wisconsin-Madison University of Wisconsin-River Falls LBNL, Berkeley University of Kansas Southern University and A&M College, Baton Rouge Sweden: Uppsala Universitet Stockholm Universitet UK: Imperial College, London Oxford University Netherlands: Utrecht University Belgium: Université Libre de Bruxelles Vrije Universiteit Brussel Universiteit Gent Université de Mons-Hainaut Germany: Universität Mainz DESY-Zeuthen Universität Dortmund Universität Wuppertal Humboldt Universität, Berlin Japan: Chiba University New Zealand: University of Canterbury

B.Baret Vrije Univertsiteit Brusse l Where are we ? Amundsen-Scott South Pole Station Here! (South pole) IceCube Amanda North Technically North also

B.Baret Vrije Univertsiteit Brusse l Detection principle O(km) long  tracks  O(10m) cascades e,  South Pole Ice properties Scattering:~20m Pointing res. (  ~2°, casc. ~35°) Absorption:~110m Effective volume Background (x E.T. events/year): atmospheric  O(10 9 ) atmospheric O(10 3 ) E.T. atm. p 

B.Baret Vrije Univertsiteit Brusse l Layout IceCube: 1km x1 km² instrumented volume 4800 Digital Optical Modules (DOMs) on 80 strings IceTop(air shower array): 1km² instrumented area 160 surface water tanks with 2 DOMs each Amanda: Ø=200m, h=500m (0.02 km³) Amanda B-10: 302 Optical Modules (OMs) on 10 strings (97-99) Amanda II: 677 OMs on 19 strings (00->)

B.Baret Vrije Univertsiteit Brusse l IceCube Deployment January 2005: First string deployed 60 DOMs installed (and working!) Hot water drilling: 2450 m deep straight within 1m hrs per hole Deployment: 2 more strings up to now Expected completion in 2010

B.Baret Vrije Univertsiteit Brusse l IceCube First Events! IceTop – IceCube String 21 Down going  IceTop tanks

B.Baret Vrije Univertsiteit Brusse l all-flavor limits ν μ (B10 1yr) ν μ (A-II 4yr) ν μ (A-II 1yr) ν e +ν μ +ν τ (cascades A-II 1yr) ν e +ν μ +ν τ (UHE B10 1yr) ν e (cascades B10 1yr) ν e +ν μ +ν τ (UHE A-II 1yr) Sensitivity and limits Icecube (1yr) WB bound Limit Sensitivity Diffuse search average flux upper limit [cm -2 s -1 ] sin  AMANDA-B10 AMANDA-II IceCube 1/2 year * Steady point sources sensitivity : E -2 flux hypothesis

B.Baret Vrije Univertsiteit Brusse l Point sources Sky map (00'-03') Significance maps No point source detected so far real sky scrambled sky no source

B.Baret Vrije Univertsiteit Brusse l Neutralino as dark matter candidate Cosmological observations  m ~ 0.30  b ~ 0.05 Minimal Supersymmetric Standard Model P R conserved  LSP stable = neutralino  interacts weakly  = GeV-TeV mass = dark matter??? stable   dark, non-baryonic matter

B.Baret Vrije Univertsiteit Brusse l Neutralino capture by Sun and Earth Sun – direct capture from galactic DM halo Earth – capture by gravitational diffusion and weak scattering

B.Baret Vrije Univertsiteit Brusse l Which WIMP signal Neutralino-induced neutrinos qq  l + l -   W, Z, H Atmospheric background atm.  :absorbed by the Earth atm. :compare on/off source angular regions “down” “up”

B.Baret Vrije Univertsiteit Brusse l Data and Monte Carlo used Data :5.0x10 9 events536.6 days eff. livetime 2001:8.7x10 8 events143.7 days eff. livetime Monte Carlo neutralino:50 GeV < M  < 5000 GeV [DARKSUSY] hard (W + W - ) and soft (bb) ann. channel 90° <  < 113° (Sun)  ~ 180° (Earth) atm.  : Sun: 32 daysEarth: 128 days [CORSIKA] 600 GeV < E p < GeV0° <  p < 90° atm. : Sun: evtsEarth: evts [ NUSIM ] 10 GeV < E < 10 8 GeV80° <  < 180°

B.Baret Vrije Univertsiteit Brusse l Rejection of signal & background Earth (paper in preparation) Sun 2001 (submitted to Astrop. Phys.)

B.Baret Vrije Univertsiteit Brusse l No excess of neutralino- induced neutrinos signal region Earth (paper in preparation) Sun 2001 (submitted to Astrop. Phys.)

B.Baret Vrije Univertsiteit Brusse l Muon flux limits – Earth ’97-’99 Improvements (wrt. ’97) separate filter for each neutralino model more statistics Outlook data set improved reconstructions new trigger lowers E thresh PAPER IN PREPARATION

B.Baret Vrije Univertsiteit Brusse l Muon flux limits - Sun st AMANDA solar neutralino results 200m diameter enables robust reconstruction of horizontal tracks Outlook data set improved reconstructions new trigger lowers E thresh AMANDA results submitted for publication

B.Baret Vrije Univertsiteit Brusse l Conclusion & outlook AMANDA & IceCube: Amanda provided very useful information (ice, drilling, detection strategy, bkgd,...) providing tighter and tighter constraints on models IceCube all flavour detection, ~30x more sensitive almost guaranteed discoveries Is being deployed and takes data WIMPs search: No statistically significant excess of neutralino-induced neutrinos from the center of the Earth or the Sun observed Upper limits on the muon flux competitive with other indirect searches Additional data are being analysed with improved techniques

B.Baret Vrije Univertsiteit Brusse l

Technically Optical Module Digital Optical Module Trigger, Digitization, HV Surface DOM time res. <2ns 400ns and 6.4µs range 3 gains noise ~700Hz time res. ~4-8 ns 32 µs range noise: ~1kHz Digitized Waveform 8” PMT 10” PMT +Main Board +flasher Amanda IceCube single p.e.

B.Baret Vrije Univertsiteit Brusse l Plan... Season planning: Nov.: preparation Dec.: construction Jan.: construction Feb.: commissioning This austral summer : 8 to 12 strings deployed By 2010 : 1km³ instrumented