MATH 31 REVIEWS Chapter 2: Derivatives
Chapter 2: Derivatives “ If you don't go off on a tangent while studying, you can derive a great deal of success from it. ”
1. Finding Derivatives from First Principles Ex. If f(x) = 3x2 - 4x + 1 , find f (x) using limits.
f(x) = 3x2 - 4x + 1 f (x) = lim f(x+h) - f(x) h0 h
f(x) = 3x2 - 4x + 1 f (x) = lim f(x+h) - f(x) h0 h = lim [3(x+h)2 - 4(x+h) + 1] - [3x2 - 4x + 1] h0 h
f(x) = 3x2 - 4x + 1 f (x) = lim f(x+h) - f(x) h0 h = lim [3(x+h)2 - 4(x+h) + 1] - [3x2 - 4x + 1] h0 h = lim 3x2 + 6xh + 3h2 - 4x - 4h + 1 - 3x2 + 4x - 1
f (x) = lim 3x2 + 6xh + 3h2 - 4x - 4h + 1 - 3x2 + 4x - 1
f (x) = lim 3x2 + 6xh + 3h2 - 4x - 4h + 1 - 3x2 + 4x - 1 = lim 6xh + 3h2 - 4h h0 h
f (x) = lim 3x2 + 6xh + 3h2 - 4x - 4h + 1 - 3x2 + 4x - 1 = lim 6xh + 3h2 - 4h h0 h = lim h (6x + 3h - 4)
f (x) = lim 3x2 + 6xh + 3h2 - 4x - 4h + 1 - 3x2 + 4x - 1 = lim 6xh + 3h2 - 4h h0 h = lim h (6x + 3h - 4) = lim (6x + 3h - 4) = 6x - 4 h0
2. Sketching Derivative Functions Remember, the derivative represents the tangent slope of a function. Thus, the derivative function simply describes the slopes of the original function.
e.g. Sketch the derivative function y = f (x) y = f(x)
y = f(x) Horizontal slopes ...
y = f(x) Horizontal slopes ... y = f (x) ... become x-intercepts (f = 0)
y = f(x) Slope > 0 y = f (x)
y = f(x) Slope > 0 y = f (x) Positive y-coordinates
y = f(x) Slope < 0 y = f (x) Negative y-coordinates
Degree = 3 y = f(x) y = f (x) Degree = 2 For polynomial functions, the degree decreases by 1
3. Power Rule Differentiate y = 5x3 - 7x + 9 - 4 + 1 - 2 x x2 x3
y = 5x3 - 7x + 9 - 4 + 1 - 2 x x2 x3 y = 5x3 - 7x + 9 - 4x-1 + x-2 - 2x-3 Bring powers to the "top"
y = 5x3 - 7x + 9 - 4 + 1 - 2 x x2 x3 y = 5x3 - 7x + 9 - 4x-1 + x-2 - 2x-3 y = 5 (3x2) - 7 + 0 - 4 (-1x-2) + -2x-3 - 2(-3x-4) Ignore the coefficients Differentiate the powers
y = 5x3 - 7x + 9 - 4 + 1 - 2 x x2 x3 y = 5x3 - 7x + 9 - 4x-1 + x-2 - 2x-3 y = 5 (3x2) - 7 + 0 - 4 (-1x-2) + -2x-3 - 2(-3x-4) y = 15x2 - 7 + 4x-2 - 2x-3 + 6x-4
y = 5x3 - 7x + 9 - 4 + 1 - 2 x x2 x3 y = 5x3 - 7x + 9 - 4x-1 + x-2 - 2x-3 y = 5 (3x2) - 7 + 0 - 4 (-1x-2) + -2x-3 - 2(-3x-4) y = 15x2 - 7 + 4x-2 - 2x-3 + 6x-4 y = 15x2 - 7 + 4 - 2 + 6 x2 x3 x4
4. Product Rule Differentiate y = (4x3 + 9x) (7x4 - 11x2 - 3) using the product rule. No need to simplify the answer.
y = (4x3 + 9x) (7x4 - 11x2 - 3) y = (4x3 + 9x) (7x4 - 11x2 - 3) + (4x3 + 9x) (7x4 - 11x2 - 3) Product Rule: f g + f g
y = (4x3 + 9x) (7x4 - 11x2 - 3) y = (4x3 + 9x) (7x4 - 11x2 - 3) + (4x3 + 9x) (7x4 - 11x2 - 3) y = (12x2 + 9) (7x4 - 11x2 - 3) + (4x3 + 9x) (28x3 - 22x)
5. Quotient Rule Differentiate y = 5 - 2x using the quotient rule. x2 + 4x
y = 5 - 2x x2 + 4x y = (5 - 2x) (x2 + 4x) - (5 - 2x) (x2 + 4x) (x2 + 4x)2 Quotient Rule: f g f g g2
y = 5 - 2x x2 + 4x y = (5 - 2x) (x2 + 4x) - (5 - 2x) (x2 + 4x) (x2 + 4x)2 y = (-2) (x2 + 4x) - (5 - 2x) (2x + 4)
y = 5 - 2x x2 + 4x y = (5 - 2x) (x2 + 4x) - (5 - 2x) (x2 + 4x) (x2 + 4x)2 y = (-2) (x2 + 4x) - (5 - 2x) (2x + 4) y = -2x2 - 8x - (10x + 20 - 4x2 - 8x)
y = -2x2 - 8x - (10x + 20 - 4x2 - 8x) (x2 + 4x)2 y = -2x2 - 8x - 10x - 20 + 4x2 + 8x
y = -2x2 - 8x - (10x + 20 - 4x2 - 8x) (x2 + 4x)2 y = -2x2 - 8x - 10x - 20 + 4x2 + 8x y = 2x2 - 10x - 20 or y = 2(x2 - 5x - 10) x2 (x + 4)2
6. Chain Rule Differentiate y = 4 + 3x - 9x2
y = 4 + 3x - 9x2 y = (4 + 3x - 9x2) 1/2
y = 4 + 3x - 9x2 y = (4 + 3x - 9x2) 1/2 y = 1 (4 + 3x - 9x2) -1/2 d (4 + 3x - 9x2) 2 dx Derivative of the "outside function" Don't forget to find the derivative of the "inside function"
y = 4 + 3x - 9x2 y = (4 + 3x - 9x2) 1/2 y = 1 (4 + 3x - 9x2) -1/2 d (4 + 3x - 9x2) 2 dx y = 1 (4 + 3x - 9x2) -1/2 (3 - 18x) 2
y = 1 (4 + 3x - 9x2) -1/2 (3 - 18x) 2 y = 3 - 18x 2 4 + 3x - 9x2 or y = 3 (1 - 6x)
7. Combination of Rules Where does the function y = (2x - 7)4 (3x + 1)6 have a horizontal tangent?
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1)6 + (2x - 7)4 [(3x + 1)6] Use the product rule first
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1)6 + (2x - 7)4 [(3x + 1)6] y = 4(2x - 7)3 (2) (3x + 1)6 + (2x - 7)4 6(3x + 1)5 (3) Use the chain rule next Don't forget to do the derivative of the "inside function"
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1)6 + (2x - 7)4 [(3x + 1)6] y = 4(2x - 7)3 (2) (3x + 1)6 + (2x - 7)4 6(3x + 1)5 (3) = 8 (2x - 7)3 (3x + 1)6 + 18 (2x - 7)4 (3x + 1)5 Put both terms into the same "order"
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1)6 + (2x - 7)4 [(3x + 1)6] y = 4(2x - 7)3 (2) (3x + 1)6 + (2x - 7)4 6(3x + 1)5 (3) = 8 (2x - 7)3 (3x + 1)6 + 18 (2x - 7)4 (3x + 1)5 = 2 (2x - 7)3 (3x + 1)5 [ 4(3x + 1) + 9(2x - 7) ] Factor out the common factors
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1)6 + (2x - 7)4 [(3x + 1)6] y = 4(2x - 7)3 (2) (3x + 1)6 + (2x - 7)4 6(3x + 1)5 (3) = 8 (2x - 7)3 (3x + 1)6 + 18 (2x - 7)4 (3x + 1)5 = 2 (2x - 7)3 (3x + 1)5 [ 4(3x + 1) + 9(2x - 7) ] = 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ]
y = 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] When does the function have a horizontal tangent?
y = 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] The function has a horizontal tangent when y = 0 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] = 0
y = 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] The function has a horizontal tangent when y = 0 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] = 0 when 2x - 7 = 0 or 3x + 1 = 0 or 30x - 32 = 0 x = 7 x = -1 x = 16 2 3 15
8. Implicit Differentiation Find y for the implicit relation x2y - 5x3 = y4 + 1
7. Implicit Differentiation Find y for the implicit relation x2y - 5x3 = y4 + 1 Remember, y is a function of x. So, you must treat it like a separate function f(x).
x2y - 5x3 = y4 + 1 (x2) y + x2 y - 15x2 = 4y3 y + 0 Product rule Chain rule
x2y - 5x3 = y4 + 1 (x2) y + x2 y - 15x2 = 4y3 y + 0 2x y + x2 y - 15x2 = 4y3 y
x2y - 5x3 = y4 + 1 (x2) y + x2 y - 15x2 = 4y3 y + 0 2x y + x2 y - 15x2 = 4y3 y x2 y - 4y3 y = 15x2 - 2xy Get y terms on one side of the equations. All others go on the other side.
x2y - 5x3 = y4 + 1 (x2) y + x2 y - 15x2 = 4y3 y + 0 2x y + x2 y - 15x2 = 4y3 y x2 y - 4y3 y = 15x2 - 2xy y (x2 - 4y3) = 15x2 - 2xy Factor out the y
x2y - 5x3 = y4 + 1 (x2) y + x2 y - 15x2 = 4y3 y + 0 2x y + x2 y - 15x2 = 4y3 y x2 y - 4y3 y = 15x2 - 2xy y (x2 - 4y3) = 15x2 - 2xy y = 15x2 - 2xy x2 - 4y3