Implications of Inheritance COMP206, Geoff Holmes and Bernhard Pfahringer
Implications OO language must support polymorphic variables Polymorphic variables: memory requirements unknown at compile-time => allocated on the heap Heap allocation => reference semantics for assignment and parameter parsing Also: equality testing == object identity And: memory management necessary => garbage collection (GC)
The Polymorphic variable Square side describe() Shape x,y describe() Circle radius describe() … Shape form = new Circle(10,10,5); form.describe(); form = new Square(15,20,10); form.describe(); …
Memory Layout Stack-based vs. heap-based Stack-based tied to method entry/exit: Allocate space for all local vars on entry Deallocate on exit Access by numeric offset (activation record) Need to know space requirements at compile-time, not possible for polymorphic variables! Java: all objects allocated on the heap (new operator), local vars point to these objects, pointers have a fixed size Java has no pointers, but internally all object values are represented by pointers.
Factorial example static public int factorial(int n) { int c = n-1; int r; if (c>0) r = n*factorial(c); else r = 1; return r; } 0 n:1 4 r:1 8 c:0 0 n:2 4 r:? 8 c:1 0 n:3 4 r:? 8 c:2 third activation record second activation record first activation record Factorial(3)
Alternative approach (e.g. C++) Different approaches are possible C++: want to use stack (efficiency) Assignment: extra fields are sliced off, E.g. a Square is turned into a Shape, Need to distinguish between virtual/non-virtual methods Need destructors, Pointers/references/values Copy-semantics, …
Assignment: reference semantics Box x = new Box(); x.setValue(7); Box y = x; y.setValue(11); System.out.println(x.getValue()); System.out.println(y.getValue()); … 11 x a box y Simple copy pointer value, i.e. point to same heap-location!
Clones If copy desired, must say so, DIY approach: Box y = new Box(); y.setValue(x.getValue()); If common, package into proper method: public Box copy() { Box b = new Box(); b.setValue(getValue()); return b; }
Clones: Java Class Object provides protected method clone() creating a bitwise copy of the receiver, plus interface Cloneable Programmer must override clone() to public and implement Cloneable: public class Box implements Cloneable { … public Object clone() { Box b = new Box(); b.setValue(getValue()); return b; }} Use: Box y = (Box) x.clone(); // must cast !!!!
Clones: caveats Just a shallow copy, sometimes need deep copies x a box a shape y a box x a box a shape y a box a shape SHALLOW DEEP
Parameter passing as assignment Passing a variable considered similar to assignment, as same value accessible through two different names; pass value, loose some control: static void sneaky (Box b) {b.setValue(11);} … x.setValue(7); sneaky(x); System.out.println(x.getValue()); 11
Equality test: object identity Easy for primitives: 7 == (3+4) ‘a’ == ‘\141’ 2 == 2.0 For objects: == implements object identity, therefore: new Integer(7) != new Integer(3+4) If we really want object equality instead of object identidy: equals method
Equality test: object equality Supplied by class Object, can be overridden: class Circle extends Shape { … public boolean equals(Object arg) { return ((arg instanceof Circle) && (radius == ((Circle) arg).radius)); }} Careful: must be symmetric and transitive Heuristic: use == for numbers and null, equals in all other situations
Equality test: bug example Suppose: class Shape { … public boolean equals(Object arg) { return ((arg instanceof Shape) && (x == ((Shape) arg).x) && (y == ((Shape) arg).y)) ; }} And no equals defined in class Square, then: Square s = new Square(10,10,5); Circle c = new Circle(10,10,5); s.equals(c); // succeeds c.equals(s); // fails
Better solution class Shape { … public boolean equals(Object arg) { return ((arg.getClass() == Shape.class) && (x == ((Shape) arg).x) && (y == ((Shape) arg).y)) ; }} class Circle extends Shape { … public boolean equals(Object arg) { return ((arg.getClass() == Circle.class) && (x == ((Shape) arg).x) && (y == ((Shape) arg).y) && (radius == ((Circle) arg).radius)); }} correct, but no inheritance, code duplication
Garbage collection (GC) Heap-based memory not automatically recovered on method exit (unlike stack) Manual management error-prone (like “free” operator in C++): Forget to free: memory leaks Free multiple times Access freed memory Java compromise: have automatic garbage collection: some runtime cost, but not too bad)
Immutable objects cannot be changed after “construction” how to: do not allow modification by not providing “mutators” (methods that change state) making data fields “private” (always good idea) (most likely) prevent against subclassing useful for “value” types, like Integer, String, and so on; safe to use as keys for HashMaps (see code example for explanation) hashCode “rule”: a.equals(b) == true => a.hashCode() == b.hashCode() [only this direction, different objects can have the same hashCode]
Object construction no explicit constructor: system adds “default constructor”: public A() { super(); } At least one constructor given explicitly: no “default constructor” will be added first line in the constructor can explicitly pass on to constructor of the super-class or same class (if not, system will add “super();”) public A() { super(“info”); /* more code */ } public A() { this(0); /* more code */ }
Construction order Data fields are allocated and initialized to default values (0, null, …) *before any* code blocks or constructors; Then the process is top-down (most general class first to most specific last), each time: Data fields are initialized to their actual values (e.g. 1 in the code example), in order Local code blocks are run, in order The respective constructor is run
Bad Inheritance example import java.util.*; public class InstrumentedArrayList extends ArrayList { // The number of attempted element additions private int addCount = 0; public InstrumentedArrayList() { } public InstrumentedArrayList(Collection c) { super(c); } public InstrumentedArrayList(int initialCapacity) { super(initialCapacity); }
cont. public void add(int index, Object o) { addCount++; super.add(index,o); } public boolean addAll(Collection c) { addCount += c.size(); return super.addAll(c); } public int getAddCount() { return addCount; } public static void main(String[] args) { InstrumentedArrayList s = new InstrumentedArrayList(); s.addAll(Arrays.asList(new String[] {”A",”B",”C"})); System.out.println(s.getAddCount()); }
Better: use Composition import java.util.*; public class InstrumentedList implements List { private final List s; private int addCount = 0; public InstrumentedList(List s) { this.s = s; } public void add(int index, Object o) { addCount++; s.add(index, o); } public boolean addAll(Collection c) { addCount += c.size(); return s.addAll(c); }
Composition, cont. public int getAddCount() { return addCount; } // plus all necessary forwarding methods public void clear() { s.clear(); } public boolean contains(Object o) { return s.contains(o); } public boolean isEmpty() { return s.isEmpty(); } … and so on …
Utilities: Arrays class, Collections lots of useful utilities, have a look at the Javadoc, e.g. Arrays.sort(…) Arrays.binarySearch(..) Arrays.toString(..) Arrays.fill(..) Arrays.hashCode(..) Arrays.equals(..) Arrays.asList(..) Arrays.deepEquals(..), deepToString(..) deepHashCode(..) Collections.shuffle(..)
Utilities: System class again lots of useful utilities, have a look at the Javadoc, e.g. System.arraycopy(..) System.nanoTime() System.identityHashCode(..) System.getenv(..) …