ICS 321 Fall 2009 The Relational Model (ii) Asst. Prof. Lipyeow Lim Information and Computer Science Department University of Hawaii at Manoa 9/10/20091Lipyeow.

Slides:



Advertisements
Similar presentations
ER to Relational Mapping. Logical DB Design: ER to Relational Entity sets to tables. CREATE TABLE Employees (ssn CHAR (11), name CHAR (20), lot INTEGER,
Advertisements

Logical DB Design: ER to Relational Entity sets to tables. Employees ssn name lot CREATE TABLE Employees (ssn CHAR (11), name CHAR (20), lot INTEGER, PRIMARY.
Relational Database. Relational database: a set of relations Relation: made up of 2 parts: − Schema : specifies the name of relations, plus name and type.
The Entity-Relationship Model
Database Management Systems, R. Ramakrishnan and J. Gehrke1 The Entity-Relationship Model Chapter 2.
Book Chapter 3 (part 2 ) From ER to Relational Model.
1 541: Database Systems S. Muthu Muthukrishnan. 2 Overview of Database Design  Conceptual design: (ER Model is used at this stage.)  What are the entities.
The Entity-Relationship (ER) Model
SQL Lecture 10 Inst: Haya Sammaneh. Example Instance of Students Relation  Cardinality = 3, degree = 5, all rows distinct.
Conceptual Design and The Entity-Relationship Model
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke. Edited by Keith Shomper, The Relational Model Chapter 3.
CSC 411/511: DBMS Design 1 1 Dr. Nan WangCSC411_L3_Relational Model 1 The Relational Model (Chapter 3)
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Entity-Relationship Model Chapter 2.
Database Management Systems 1 Raghu Ramakrishnan The Relational Model Chapter 3 Instructor: Mirsad Hadzikadic.
1 Translation of ER-diagram into Relational Schema Prof. Sin-Min Lee Department of Computer Science.
SPRING 2004CENG 3521 The Relational Model Chapter 3.
Modeling Your Data Chapter 2. Overview of Database Design Conceptual design: –What are the entities and relationships in the enterprise? – What information.
The Relational Model 198:541 Rutgers University. Why Study the Relational Model?  Most widely used model. Vendors: IBM, Informix, Microsoft, Oracle,
Conceptual Design Using the Entity-Relationship (ER) Model
The Entity-Relationship (ER) Model CS541 Computer Science Department Rutgers University.
1 Data Modeling Yanlei Diao UMass Amherst Feb 1, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
1 Data Modeling Yanlei Diao UMass Amherst Feb 1, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Entity-Relationship Model Chapter 2.
ER continued, and ER to Relational Mappings R&G Chapters 2, 3 Lecture 22.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
ER to Relational Mapping. Logical DB Design: ER to Relational Entity sets to tables. CREATE TABLE Employees (ssn CHAR (11), name CHAR (20), lot INTEGER,
1 The Relational Model Chapter 3. 2 Objectives  Representing data using the relational model.  Expressing integrity constraints on data.  Creating,
The Relational Model Chapter 3
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3 Modified by Donghui Zhang.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model  Vendors: IBM, Informix, Microsoft, Oracle, Sybase  Recent.
 Relational database: a set of relations.  Relation: made up of 2 parts: › Instance : a table, with rows and columns. #rows = cardinality, #fields =
1 The Entity-Relationship Model Chapter 6. 2 Database Design Process  Requirement collection and analysis  DB requirements and functional requirements.
1 Translation of ER-diagram into Relational Schema Prof. Sin-Min Lee Department of Computer Science.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
ICS 321 Spring 2011 High Level Database Models Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 2/7/20111Lipyeow.
Christoph F. Eick: Designing E/R Diagrams 1 The Entity-Relationship Model Chapter 3+4.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
The Relational Model1 ER-to-Relational Mapping and Views.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
09/03/2009Lipyeow Lim -- University of Hawaii at Manoa 1 ICS 321 Fall 2009 Introduction to Database Design Asst. Prof. Lipyeow Lim Information & Computer.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
Mapping E/R Diagrams to Relational Database Schemas
CMPT 258 Database Systems The Relationship Model PartII (Chapter 3)
Lecture 3 Book Chapter 3 (part 2 ) From ER to Relational.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Database Management Systems Chapter 3 The Relational Model.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
ICS 421 Spring 2010 Relational Model & Normal Forms Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 1/19/20101Lipyeow.
ER & Relational: Digging Deeper R &G - Chapters 2 & 3.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
Mapping E/R to RM, R. Ramakrishnan and J. Gehrke with Dr. Eick’s additions 1 Mapping E/R Diagrams to Relational Database Schemas Second Half of Chapter.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 The Relational Model Chapter 3.
1 CS122A: Introduction to Data Management Lecture #5 (E-R  Relational, Cont.) Instructor: Chen Li.
Database Management Systems 1 Raghu Ramakrishnan The Relational Model Chapter 3 Instructor: Xin Zhang.
1 The Relational Model Chapter 3. 2 Why Study the Relational Model?  Most widely used model.  Multi-billion dollar industry, $15+ bill in  Vendors:
Database Management Systems, R. Ramakrishnan and J. Gehrke1 The Entity-Relationship Model Chapter 2.
Logical DB Design: ER to Relational
COP Introduction to Database Structures
These slides are based on the slides of your text book.
From ER to Relational Model
The Relational Model Chapter 3
The Relational Model Chapter 3
The Entity-Relationship Model
The Relational Model Chapter 3
The Relational Model Chapter 3
Presentation transcript:

ICS 321 Fall 2009 The Relational Model (ii) Asst. Prof. Lipyeow Lim Information and Computer Science Department University of Hawaii at Manoa 9/10/20091Lipyeow Lim -- University of Hawaii at Manoa

Internet Book Store Example 9/10/2009Lipyeow Lim -- University of Hawaii at Manoa2 BooksCustomers Orders Isbn title authorqty price year qty ordertime shipdate cardnum cid name address

Logical DB Design: ER to Relational Entity sets to tables: CREATE TABLE Employees (ssn CHAR (11), name CHAR (20), lot INTEGER, PRIMARY KEY (ssn)) Employees ssn name lot

Relationship Sets to Tables In translating a relationship set to a relation, attributes of the relation must include: – Keys for each participating entity set (as foreign keys). This set of attributes forms a superkey for the relation. – All descriptive attributes. CREATE TABLE Works_In( ssn CHAR (11), did INTEGER, since DATE, PRIMARY KEY (ssn, did), FOREIGN KEY (ssn) REFERENCES Employees, FOREIGN KEY (did) REFERENCES Departments)

Review: Key Constraints Each dept has at most one manager, according to the key constraint on Manages. Translation to relational model? Many-to-Many1-to-11-to ManyMany-to-1 dname budget did since lot name ssn Manages Employees Departments

Translating ER Diagrams with Key Constraints Map relationship to a table: – Note that did is the key now! – Separate tables for Employees and Departments. Since each department has a unique manager, we could instead combine Manages and Departments. CREATE TABLE Manages( ssn CHAR(11), did INTEGER, since DATE, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees, FOREIGN KEY (did) REFERENCES Departments) CREATE TABLE Dept_Mgr( did INTEGER, dname CHAR(20), budget REAL, ssn CHAR(11), since DATE, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees)

Review: Participation Constraints Does every department have a manager? – If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial). Every did value in Departments table must appear in a row of the Manages table (with a non-null ssn value!) lot name dname budgetdid since name dname budgetdid since Manages since Departments Employees ssn Works_In 9/10/20097Lipyeow Lim -- University of Hawaii at Manoa

Participation Constraints in SQL We can capture participation constraints involving one entity set in a binary relationship, but little else (without resorting to CHECK constraints). CREATE TABLE Dept_Mgr( did INTEGER, dname CHAR(20), budget REAL, ssn CHAR(11) NOT NULL, since DATE, PRIMARY KEY (did), FOREIGN KEY (ssn) REFERENCES Employees, ON DELETE NO ACTION ) 9/10/20098Lipyeow Lim -- University of Hawaii at Manoa

Review: Weak Entities A weak entity can be identified uniquely only by considering the primary key of another (owner) entity. – Owner entity set and weak entity set must participate in a one-to-many relationship set (1 owner, many weak entities). – Weak entity set must have total participation in this identifying relationship set. lot name age pname Dependents Employees ssn Policy cost 9/10/20099Lipyeow Lim -- University of Hawaii at Manoa

Translating Weak Entity Sets Weak entity set and identifying relationship set are translated into a single table. – When the owner entity is deleted, all owned weak entities must also be deleted. CREATE TABLE Dep_Policy ( pname CHAR(20), age INTEGER, cost REAL, ssn CHAR(11) NOT NULL, PRIMARY KEY (pname, ssn), FOREIGN KEY (ssn) REFERENCES Employees, ON DELETE CASCADE ) 9/10/200910Lipyeow Lim -- University of Hawaii at Manoa

Review: ISA Hierarchies Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed) Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no) Contract_Emps name ssn Employees lot hourly_wages ISA Hourly_Emps contractid hours_worked  As in C++, or other PLs, attributes are inherited.  If we declare A ISA B, every A entity is also considered to be a B entity. 9/10/200911Lipyeow Lim -- University of Hawaii at Manoa

Translating ISA Hierarchies to Relations General approach: – 3 relations: Employees, Hourly_Emps and Contract_Emps. Hourly_Emps: Every employee is recorded in Employees. For hourly emps, extra info recorded in Hourly_Emps (hourly_wages, hours_worked, ssn); must delete Hourly_Emps tuple if referenced Employees tuple is deleted). Queries involving all employees easy, those involving just Hourly_Emps require a join to get some attributes. Alternative: Just Hourly_Emps and Contract_Emps. – Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked. – Each employee must be in one of these two subclasses. 9/10/200912Lipyeow Lim -- University of Hawaii at Manoa

Review: Binary vs. Ternary Relationships What are the additional constraints in the 2nd diagram? age pname Dependents Covers name Employees ssn lot Policies policyid cost Beneficiary age pname Dependents policyid cost Policies Purchaser name Employees ssn lot Bad design Better design 9/10/200913Lipyeow Lim -- University of Hawaii at Manoa

Binary vs. Ternary Relationships (Contd.) The key constraints allow us to combine Purchaser with Policies and Beneficiary with Dependents. Participation constraints lead to NOT NULL constraints. What if Policies is a weak entity set? CREATE TABLE Policies ( policyid INTEGER, cost REAL, ssn CHAR(11) NOT NULL, PRIMARY KEY (policyid). FOREIGN KEY (ssn) REFERENCES Employees, ON DELETE CASCADE ) CREATE TABLE Dependents ( pname CHAR(20), age INTEGER, policyid INTEGER, PRIMARY KEY (pname, policyid). FOREIGN KEY (policyid) REFERENCES Policies, ON DELETE CASCADE ) 9/10/200914Lipyeow Lim -- University of Hawaii at Manoa

Views A view is just a relation, but we store a definition, rather than a set of tuples. Views can be dropped using the DROP VIEW command.  How to handle DROP TABLE if there’s a view on the table? DROP TABLE command has options to let the user specify this. CREATE VIEW YoungActiveStudents (name, grade) AS SELECT S.name, E.grade FROM Students S, Enrolled E WHERE S.sid = E.sid and S.age<21 9/10/200915Lipyeow Lim -- University of Hawaii at Manoa

Views and Security Views can be used to present necessary information (or a summary), while hiding details in underlying relation(s). – Given YoungStudents, but not Students or Enrolled, we can find students s who have are enrolled, but not the cid’s of the courses they are enrolled in. 9/10/200916Lipyeow Lim -- University of Hawaii at Manoa

Relational Model: Summary A tabular representation of data. Simple and intuitive, currently the most widely used. Integrity constraints can be specified by the DBA, based on application semantics. DBMS checks for violations. – Two important ICs: primary and foreign keys – In addition, we always have domain constraints. Powerful and natural query languages exist. Rules to translate ER to relational model 9/10/200917Lipyeow Lim -- University of Hawaii at Manoa

Course Project (30%) Form a group of 3. Consider – Schedule of group members – Interests – Using Laulima “Discussion List”->”Student Lounge” to find groups/members Propose a project and post in Laulima under “Class Discussion” with “Project:” as a prefix in the title by Oct 6: – Title – Group name and members Assign one person as the group representative – Short description of project goal – A brief timeline with milestones Ideally you should have an idea who is doing what Do the project Prepare a short 10 min presentation and/or demo Present and demo your project in class on Dec 3 & 8. 9/10/2009Lipyeow Lim -- University of Hawaii at Manoa18

Proposing a Project A good project would probably – Use at least one DBMS software – Involve substantial programming in SQL and another language (Java, C/C++, Ruby, PHP, PERL, …) – Answer an interesting question or give insight into some specific issues Start by formulating the project goal or “question”, e.g., – System building projects: how do we manage the data in application/scenario X? X should be interesting. – Researchy-type projects: what is the best way to do X ? Evaluating “alternatives” should be an important component of the project. Think about how to quantify and measure your findings 9/10/2009Lipyeow Lim -- University of Hawaii at Manoa19

Project Grading Originality Complexity Breadth & depth of the analysis/evaluation Presentation/demo 9/10/2009Lipyeow Lim -- University of Hawaii at Manoa20