By: Matthew Irvine and Cristina Belew. Origination and Goals  Partnership with Habitat for Humanity  Their goal is to lower the overall cost to owner.

Slides:



Advertisements
Similar presentations
Application of Steady-State Heat Transfer
Advertisements

ME 340 Project: Fall 2010 Heat Transfer in a Rice Cooker Brad Glenn Mason Campbell.
Heat transfer rates through a bedroom window with and without an A/C unit Sam Sanderson David Theurer December 2006.
Conduction Conduction is the transfer of thermal energy by collisions between particles in matter. Conduction occurs because particles in matter are in.
Matter and Energy.
Heat Transfer Chapter 2.
MECHANISM OF HEAT TRANSFER Mode of Heat transfer Conduction Convection
Chapter 2: Overall Heat Transfer Coefficient
Agricultural Structures: Insulation and Heat Flow
Energy in Thermal Processes
Thermal Energy. Objectives 6.1 Compare and contrast the transfer of thermal energy by conduction, convection, and radiation. 6.1 Differentiate between.
Thermal Analysis of short bake out jacket version 1 12-Nov-2013.
One-Dimensional Steady-State Conduction
Heat Loss & Gain Calculations 1. How Heat Moves in Homes Conduction is the transfer of heat through solid objects, such as the ceilings, walls, and floors.
Home Insulation By: Jeff Krise. Introduction Analyze the rate of heat transfer from the attic to the interior of the home. Based on summer average temperatures.
Announcements 9/14/11 Prayer Remember, HW solutions are being posted in hallway around corner from where you turn in the homework, right next to the CSR.
MECh300H Introduction to Finite Element Methods
Furnace Efficiency Bryce Cox Dallin Bullock. Problem My gas bill is very expensive My furnace claims an efficiency of 78% but it appears to be less efficient.
One Dimensional Steady Heat Conduction problems P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Simple ideas for complex.
Effects different insulating materials have on heat transfer through exterior house walls Tim Doot and Sabin Gautam.
Trevor Hedman Kendall Hill. Assumptions:  Outside wall is exposed to convection due to wind.  Convection is approximated by flow over a flat plate.
 On average, home heating uses more energy than any other system in a home  About 45% of total energy use  More than half of homes use natural gas.
Flash and FOIL® Frame Wall Insulation. Module 1 Masonry Wall Insulation Hybrid Spray Foam and Reflective Insulation System – Fi-Foil® Company Introduces…
Heat Loss and Gain Heat Loss and Gain
Introduction to Thermodynamics
The Buildings Envelope.  R Values are the thermal resistance of a building product. R values are given to certain materials to evaluate there ability.
Chapter 2 HEAT CONDUCTION EQUATION
PASSIVE SOLAR DESIGN. Design Techniques
Introduction to Thermodynamics
Heat Diffusion Equation Apply this equation to a solid undergoing conduction heat transfer as shown where: E = mc p T= (  V)c p T =  (dxdydz)c p T x.
Introduction to Thermodynamics
STEADY HEAT TRANSFER AND THERMAL RESISTANCE NETWORKS
TEKS 5.7A Matter has Physical Properties Building a House Model- Conductors And Insulators.
ME 414 : Project 1 Heating System for NASA North Pole Project Team Members Alan Benedict Jeffrey Jones Laura O’Hair Aaron Randall May 5, 2006.
Overall Heat Transfer Coefficient
Chapter 2 HEAT CONDUCTION EQUATION
Chapter 3 Part 1 One-Dimensional, Steady-State Conduction.
What are common results of heat transfer? Case #1, no phase transition or work done. How much does the temperature vary? Heat is energy in transit! Positive,
1 MME3360b Assignment 04 10% of final mark 6 problems, each worth 16.7% of assignment mark Due April 9 th, 2012.
 On average, home heating uses more energy than any other system in a home  About 45% of total energy use  More than half of homes use natural gas.
Transferring Thermal Energy
Lesson 13 CONVECTION HEAT TRANSFER Given the formula for heat transfer and the operating conditions of the system, CALCULATE the rate of heat transfer.
One-Dimensional Steady-State Conduction
ATLAS Calorimeter Argon Gap Convection Test Bed April 25,
Heat Transfer Equations. Fouling Layers of dirt, particles, biological growth, etc. effect resistance to heat transfer We cannot predict fouling factors.
STEADY HEAT CONDUCTION
MECH4450 Introduction to Finite Element Methods
Conduction, convection, and radiation are three ways to transfer energy. Section 2: Conduction, Convection, and Radiation.
Thermal Analysis Assumptions: Body Temperature (Environment) is 37˚C Heat distribution on outside of device will be modeled via FEA Heat transfer method.
A Study of Insulations Eric Luker and Chase Bailey.
Chapter 3.4 Notes Thermal Rates.  The amount of heat that is transferred per unit time is the heat flow rate  Equation for heat flow rate = heat / time.
Exercises for Q1. Insulated copper tube A thin walled 10 mm copper tube is used to transport a low-temperature refrigerant with a temperature that is.
Using Thermal Energy—Chapter 6
Using Thermal Energy Mrs. Nell 8 th Grade Physical Science Chapter 6 Review.
THERMODYNAMICS Branch of science dealing with nature of heat.
Heating & Cooling. Introduction to Heating & Cooling.
TUTORIAL 1 7/3/2016.
Chapter 15 Heat Transfer. Second Law of Thermodynamics Heat flows naturally from hot to cold objects. Heat will not flow spontaneously from cold object.
Chapter 5 – Thermal Energy
AFE BABALOLA UNIVERSITY
The 3 Types of Heat Transfer
Conduction.
14-6 Heat Transfer: Conduction
Simulated thermal performance of triple vacuum glazing
RESIDENTIAL HVAC (HEAT LOSS & GAIN)
Heat gain and heat loss in buildings
Section 16.2 Energy Transfer.
Physical Properties of Matter
HEAT EXCHANGE IN BUILDINGS. TERMINOLOGIES Thermal conductivity: is the rate of heat flow through a unit area of unit thickness of the material for a unit.
Presentation transcript:

By: Matthew Irvine and Cristina Belew

Origination and Goals  Partnership with Habitat for Humanity  Their goal is to lower the overall cost to owner  Studied the effect of insulation on energy costs  Looked for the effects of different insulations and insulating methods  Recommend the insulations with the lowest cost to owner

Four Different Areas  Wall insulation types  Framing dimension selection  Attic insulation  Duct Insulation

Design Modeling Assumptions  h and k values  No thermal contact resistance  Siding geometry  No radiation in attic, theoretical venting

Decision of appropriate options  Wall Insulation  Stud Sizing  Duct Insulation

Modeling Techniques  We began with a square foot section  Moved to a larger section with other elements included  Completed our analysis by simulating an entire house (Woodruff House)

Studied Design Description  Small and large wall section for 2X4 and 2X6  Attic Section  Duct Section

2 x 4 Stud, 1 x 1 m 2 Section: Overview  Equation for heat flux Q = (T 2 – T 1 )/R total  Studied 3 times during the year January – ºC April – ºC July ºC  Desired inside temperature ºC Drywall Insulation Plywood Air Pocket Hardiboard

2 x 4 Stud, 1 x 1 m 2 Section: R- values  R of Convection – 1/h*A h- convection coefficient (W/m·°C) A- area of convection (m 2 )  R of a certain material – L/k*A k- thermal conductivity L- thickness of material (m) A- area of material (m 2 )  R total = R outside,convection + R drywall + R insulation + R hariboard + R air pocket + R siding + R inside,convection R (W/m·°C) RiRi R january R april R july R hardiboard R plywood R insulation R drywall R air pocket R-Total January R-Total April R-Total July W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C

2 x 4 Stud, 1 x 1 m 2 Section: Theoretical vs. Simulation Heat Flux  Heat flux for each insulation and temperature difference was calculated next with Solidworks and compared to the theoretical calculations done. Heat Flux (W-theoretical) JanuaryAprilJuly W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C Heat Flux (W- simulation) JanuaryAprilJuly W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C Error (%)JanuaryAprilJuly W/m 2 ·°C0.84%0.63%0.91% 0.03 W/m 2 ·°C0.76%0.79%1.11% W/m 2 ·°C0.73%0.50%0.78%

2 x 4 Stud, 1 x 1 m 2 Section: FEA (January) W/m 2 ·ºC0.03 W/m 2 ·ºC0.046 W/m 2 ·ºC

2 x 4 Stud, 1 x 1 m 2 Section: FEA (April) W/m 2 ·ºC0.03 W/m 2 ·ºC0.046 W/m 2 ·ºC

2 x 4 Stud, 1 x 1 m 2 Section: FEA (July) W/m 2 ·ºC0.03 W/m 2 ·ºC0.046 W/m 2 ·ºC

2 x 6 Stud, 1 x 1 m 2 Section: R- values  Next Step: How does the heat flux change when more insulation is added with a 2 x 6.  The R-values were calculated again when a thicker insulation. R (W/m·°C) RiRi R january R April R july R hardiboard R plywood R insulation R drywall R air pocket R-Total January R-Total April R-Total July W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C

2 x 6 Stud, 1 x 1 m 2 Section: Theoretical vs. Simulation Heat Flux  Here are the heat flux numbers for the SolidWorks simulations compared to the theoretical calculations done: Heat Flux (W-theoretical) JanuaryAprilJuly W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C Heat Flux (W- simulation) JanuaryAprilJuly W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C Error (%)JanuaryAprilJuly W/m 2 ·°C0.61%0.80%0.51% 0.03 W/m 2 ·°C0.47%0.69%0.38% W/m 2 ·°C0.65%0.85%0.55%

2 x 6 Stud, 1 x 1 m 2 Section: FEA (January) W/m 2 ·ºC0.03 W/m 2 ·ºC0.046 W/m 2 ·ºC

2 x 6 Stud, 1 x 1 m 2 Section: FEA (April) W/m 2 ·ºC0.03 W/m 2 ·ºC0.046 W/m 2 ·ºC

2 x 6 Stud, 1 x 1 m 2 Section: FEA (July) W/m 2 ·ºC0.03 W/m 2 ·ºC0.046 W/m 2 ·ºC

Conclusions from Theoretical and SolidWorks Studies of 1 x 1 m 2 Section  Based upon this data, fiberglass is the insulation to choose. The heat flow through the section of wall is the lowest compared to the other insulation choices.

3 Sections of Wall with 2 x 4 Studs: Overview  The next step: A bigger section of wall with studs included.  The R-values had to be calculated for the sections of wall next to the studs and next to the insulation. Drywall Insulation Studs Plywood Hardiboard

3 Sections of Wall with 2 x 4 Studs: R-values RiRi R January R April R July R hardiboard R plywood R insulation R drywall R studs 1/R-Total January 1/R-Total April 1/R-Total July W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C Studs

3 Sections of Wall with 2 x 4 Studs: Heat Flux Comparisons Heat Flux (W-simulation) W/m 2 ·°C0.03 W/m 2 ·°C0.046 W/m 2 ·°C January April July Heat Flux (W-Theoretical) W/m 2 ·°C0.03 W/m 2 ·°C0.046 W/m 2 ·°C January April July Error (%)0.042 W/m 2 ·°C0.03 W/m 2 ·°C0.046 W/m 2 ·°C January 0.21%2.73%1.20% April 2.25%3.41%1.21% July 1.43%3.85%2.34%

3 Sections of Wall with 2 x 4 Studs: FEA (January) W/m 2 ·ºC 0.03 W/m 2 ·ºC W/m 2 ·ºC

3 Sections of Wall with 2 x 4 Studs: FEA (April) W/m 2 ·ºC0.03 W/m 2 ·ºC W/m 2 ·ºC

3 Sections of Wall with 2 x 4 Studs: FEA (July) W/m 2 ·ºC0.03 W/m 2 ·ºC0.042 W/m 2 ·ºC

Duct Insulation: Overview  Next step: Determine what size fiberglass insulation is best  Assumptions: Air flowing through is 22.2 °C Air surrounding duct is the temperature of the outside since placed in attic  Three fiberglass insulation size choices of 2 inches, 4 inches and 6 inches.  The analysis in Solidworks was performed on a three foot section of duct. Reflective Barrier Fiberglass insulation Aluminum Core Air Flow

Duct Insulation: R-values  For a cylinder, the equation for the total r-value changes. It is dependent on the radius of each section of material. R-Values R convection, inside R aluminum R fiberglass R reflective barrier R ouside,convection 2 inch inch E inch

Duct Insulation: Heat Flux Heat Flux- SimulationJanuaryAprilJuly 2 inch inch inch Heat Flux- TheoreticalJanuaryAprilJuly 2 inch inch inch Error (%)JanuaryAprilJuly 2 inch -0.31%-0.52%0.13% 4 inch 1.30%1.55%-1.17% 6 inch -1.38%-1.71%-1.27%

Duct Insulation: FEA Simulation (January) January Analysis: Temperature flow through the center at 22.2 ºC and the surrounding temperature ºC 2 inches 4 inches6 inches

Duct Insulation: FEA Simulation (April) 6 inches4 inches 2 inches April Analysis: Temperature flow through the center at 22.2 ºC and surrounding temperature at ºC

Duct Insulation: FEA Simulation (July) July Analysis: Temperature flow through the center at 22.2 ºC and the surrounding temperature 27.2ºC 2 inches 4 inches6 inches

Attic Insulation: Overview  Next Step: Which insulation is the best choice for the attic  Assumptions: Attic temperature is the outside temperature Inside temperature is 22.2 °C Drywall Insulation

Attic Insulation: R-values R-Values R inside R january R april R July R insulation R drywall R- Total January R- Total April R-Total July W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C

Attic Insulation: Heat Flux Heat Flux- TheoreticalJanuaryAprilJuly W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C Heat Flux- SimulationJanuaryAprilJuly W/m 2 ·°C W/m 2 ·°C W/m 2 ·°C Error (%)JanuaryAprilJuly W/m 2 ·°C 0.25%0.55%0.13% 0.03 W/m 2 ·°C 0.01%0.28%-0.09% W/m 2 ·°C 0.00%0.27%-0.11%

House Model: Overview  Next Step: Move from a small section of wall or attic to a full wall or ceiling.  Each section of wall was simulated separately and then the heat flux of all were added together.

House Model: Layout

House Model: FE Analysis  Here are the results for the heat flux traveling through each wall of the house model. Heat Flux (W) W/m 2 ·ºC for January W/m 2 ·ºC for April W/m 2 ·ºC for July Back Wall Front Wall Left Wall Right Wall Ceiling Heat Flux Total

House Model: FEA Simulation Right and Left Walls

House Model: FEA Simulation  Front Wall

Quantitative Results  Insulation Type (30%)  Duct Thickness (36% compared to 20%)  Stud Sizing (~30%)

Future Work  Determine thermal conductivities for each insulation  Find quantitative difference of heat flux for different insulation choices  Compare cost difference between insulations with energy savings or loses

References  Heat and Mass Transfer (Cengel; McGraw-Hill)     Engineering Analysis with SolidWorks Simulation 2010 (Kurowski; SDC Publications)     Habitat for Humanity