Second Berkeley School on Collective Dynamics, May 21-25, 2007 Tetsuo Hatsuda, Univ. Tokyo PHYSICS is FUN LATTICE is FUN [1] Lattice QCD basics [2] Nuclear.

Slides:



Advertisements
Similar presentations
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Advertisements

Lattice study for penta-quark states
Sasa PrelovsekScadron70, February Simulations of light scalar mesons on the lattice and related difficulties Scadron 70, IST Lisbon, Portugal (February.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
A). Introduction b). Quenched calculations c). Calculations with 2 light dynamical quarks d). (2+1) QCD LATTICE QCD SIMULATIONS, SOME RECENT RESULTS (END.
Nuclear Physics from the sky Vikram Soni CTP. Strongly Interacting density (> than saturation density) Extra Terrestrial From the Sky No.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
TQFT 2010T. Umeda (Hiroshima)1 Equation of State in 2+1 flavor QCD with improved Wilson quarks Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration.
JPS autumn 2010T. Umeda (Hiroshima)1 ウィルソンクォークを用いた N f =2+1 QCD の状態方程式の研究 Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration JPS meeting, Kyushu-koudai,
Quark-quark interaction in baryons from Nambu-Bethe-Salpeter amplitudes on lattice Hideaki Iida (Kyoto Univ.) in collaboration with Yoichi Ikeda (Tokyo.
Lattice QCD calculation of Nuclear Forces Noriyoshi ISHII (Univ. of Tsukuba) in collaboration with Sinya AOKI (Univ. of Tsukuba) Tetsuo HATSUDA (Univ.
Thermal 2007T.Umeda (Tsukuba)1 Constant mode in charmonium correlation functions Takashi Umeda This is based on the Phys. Rev. D (2007) Thermal.
R. MachleidtNuclear Forces - Lecture 1 History, Facts, Phen. (CNSSS13) 1 Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho History, Facts and.
Lattice QCD and Nuclear Physics Martin Savage University of Washington Lattice 2005, Dublin, July 2005.
Lattice 07, Regensburg, 1 Magnetic Moment of Vector Mesons in Background Field Method Structure of vector mesons Background field method Some results x.
QUARKS, GLUONS AND NUCLEAR FORCES Paulo Bedaque University of Maryland, College Park.
1 Heavy quark Potentials in Full QCD Lattice Simulations at Finite Temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
ATHIC2008T.Umeda (Tsukuba)1 QCD Thermodynamics at fixed lattice scale Takashi Umeda (Univ. of Tsukuba) for WHOT-QCD Collaboration ATHIC2008, Univ. of Tsukuba,
1 Multi-nucleon bound states in N f =2+1 lattice QCD T. Yamazaki 1), K.-I. Ishikawa 2), Y. Kuramashi 3,4), A. Ukawa 3) 1) Kobayashi-Maskawa Institute,
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
H. Lenske Institut für Theoretische Physik, U. Giessen Aspects of SU(3) Flavor Physics In-medium Baryon Interactions Covariant Density Functional Theory.
KEK on finite T & mu QCDT. Umeda (Hiroshima) QCD thermodynamics from shifted boundary conditions Takashi Umeda Lattice QCD at finite temperature and density,
1 2+1 Flavor lattice QCD Simulation on K computer Y.Kuramashi U. of Tsukuba/RIKEN AICS August 2, Mainz.
High Energy Nuclear Physics and the Nature of Matter Outstanding questions about strongly interacting matter: How does matter behave at very high temperature.
Komaba seminarT.Umeda (Tsukuba)1 A study of charmonium dissociation temperatures using a finite volume technique in the lattice QCD T. Umeda and H. Ohno.
GCOE-PD seminarTakashi Umeda (YITP, Kyoto Univ.)1 有限温度格子QCDの 新しいアプローチの可能性 Takashi Umeda (YITP, Kyoto Univ.) for WHOT-QCD Collaboration GCOE-PD seminar,
NN potentials from lattice QCD Noriyoshi ISHII (Univ. of Tsukuba) with Sinya AOKI (Univ. of Tsukuba) Tetsuo HATSUDA (Univ. of Tokyo) Hidekatsu NEMURA (RIKEN)
Lattice 2012T. Umeda (Hiroshima)1 Thermodynamics in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach Takashi Umeda (Hiroshima Univ.)
@ Brookhaven National Laboratory April 2008 Spectral Functions of One, Two, and Three Quark Operators in the Quark-Gluon Plasma Masayuki ASAKAWA Department.
Short-range nuclear force in lattice QCD Noriyoshi Ishii (Univ. of Tokyo) for HALQCD Collaboration S.Aoki (Univ. of Tsukuba), T.Doi (Univ. of Tsukuba),
Hadrons: color singlets “white states”
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with S. Aoki, K. Kanaya, N. Ishii, N. Ukita, T. Umeda (Univ. of Tsukuba) T. Hatsuda (Univ. of.
JPS07 AutumnTakashi Umeda (Tsukuba Univ.)1 Finite temperature lattice QCD with Nf=2+1 Wilson quark action WHOT-QCD Collaboration T.Umeda, S.Aoki, K.Kanaya.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
R. Machleidt, University of Idaho Recent advances in the theory of nuclear forces and its relevance for the microscopic approach to dense matter.
1 PENTA-Quark Baryons on the Lattice T. T.Takahashi, T. Umeda, T. Onogi and T.K. (Yukawa Institute for Theoretical Physics, Kyoto) ・ Pentaquarks ・ Present.
Lawrence Livermore National Laboratory Lattice QCD and Nuclear physics From Pipe Dream to Reality June 22, 2009 Tom Luu Performance Measures x.x, x.x,
Towards the QCD equation of state at the physical point using Wilson fermion WHOT-QCD Collaboration: T. Umeda (Hiroshima Univ.), S. Ejiri (Niigata Univ.),
Collaborators: Bugra Borasoy – Bonn Univ. Thomas Schaefer – North Carolina State U. University of Kentucky CCS Seminar, March 2005 Neutron Matter on the.
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Inter-Quark Potentials in Baryons and Multi-Quark Systems in QCD H. Suganuma, A. Yamamoto, H. Iida, N. Sakumichi (Kyoto Univ.) with T.T.Takahashi (Kyoto.
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
Possible molecular bound state of two charmed baryons - hadronic molecular state of two Λ c s - Wakafumi Meguro, Yan-Rui Liu, Makoto Oka (Tokyo Institute.
1 11/20/13 21/11/2015 Jinniu Hu School of Physics, Nankai University Workshop on “Chiral forces and ab initio calculations” Nov. 20- Nov. 22,
Lattice QCD approach to nuclear force Noriyoshi ISHII (Univ. of Tsukuba) in collaboration with Sinya AOKI (Univ. of Tsukuba) Tetsuo HATSUDA (Univ. of Tsukuba)
S. Aoki (Univ. of Tsukuba), T. Doi (Univ. of Tsukuba), T. Hatsuda (Univ. of Tokyo), T. Inoue (Univ. of Tsukuba), N. Ishii (Univ. of Tokyo), K. Murano (Univ.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
Bulk and Spectral Observables in Lattice QCD Tetsuo Hatsuda ( 初田哲男 ) Univ. Tokyo (東京大学) WMAP (2001-) RHIC (2000- ) LATTICE Three Major Tools to study Early.
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Low energy scattering and charmonium radiative decay from lattice QCD
May the Strong Force be with you
Lattice QCD at finite temperature Péter Petreczky
Baryons on the Lattice Robert Edwards Jefferson Lab Hadron 09
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with
Excited State Spectroscopy from Lattice QCD
Kernfysica: quarks, nucleonen en kernen
Excited State Spectroscopy from Lattice QCD
Neutron EDM with external electric field
Lattice QCD study of charmonium dissociation temperatures
Lambda(1405) as a 5Q from anisotropic lattice QCD
Current understanding of the nuclear force
EoS in 2+1 flavor QCD with improved Wilson fermion
Theory on Hadrons in nuclear medium
Presentation transcript:

Second Berkeley School on Collective Dynamics, May 21-25, 2007 Tetsuo Hatsuda, Univ. Tokyo PHYSICS is FUN LATTICE is FUN [1] Lattice QCD basics [2] Nuclear force on the lattice (  dense QCD) [3] In-medium hadrons on the lattice (  hot QCD) [4] Summary I II

Why lattice ? well defined QM (finite a and L) gauge invariant fully non-perturbative hadron mass, coupling, form factor etc scattering (phase shift, potential etc) hot plasma What one can do cold plasma far from equilibrium system What one cannot do (at present) quarks q(n) on the sites gluons U  (n) on the links Lattice QCD Basics

QCD partition function 1/T a L Zero temperature : 1/T ~ L Finite temperature : 1/T << L quenched QCD : det F=1 (exploratory studies) full QCD : det F≠1 (precision studies) n n+  n+  + n+ Wilson gauge action plaquette link variable   

Important limits and theory-guides L -1  0 (thermodynamics limit) : finite size scaling a  0 (continuum limit) : asymptotic freedom m  0 (chiral limit) : chiral pert. theory L -1 a m Improved actions: asqtad, p4, stout, clover … different way of reducing the discretization error Fermions: staggered, Wilson, Domain-wall, Overlap different way of handling chiral symmetry Modern algorithms: RHMC, DDHMC … techniques to make the simulations fast and reliable Simulation techniques

76763131 5  0.05 Example of improvement: Number of floating-point operations To collect 100 config. on 2LxL 3 lattice with DDHMC algorithm: 1 year = 3 x 10 7 sec HNC  DDHMC Del debbio, Giusti, Luscher, Petronzio, Tantalo, hep-lat/

To collect 1000 indep. gauge conf. on 24 3 x40, a=0.08 fm lattice (T=0) Clark, hep-lat/

QCD FNAL Tsukuba RBRC-Columbia Rome KEK

time space r M  ∞ E 0 = 2M + V(r) Heavy quark potential time space M = finite E 0 = ground state mass Meson mass Typical measurement of mass : QQ pair

Examples in quenched QCD R 0.5 fm1.0 fm Linear confining string Bali, Phys. Rep. 343 (’01) 1 Charmoniums CP-PACS, Phys. Rev. D65 (’02) S+1 L J

Examples in full QCD string breaking N f = 2, Wilson sea-quarks, 24 3 x40 a= fm, L= 2 fm, m p /m r = SESAM Coll., Phys.Rev.D71 (2005) fm0.5fm 1.5fm [ V(r) - 2m HL ] a Charmoniums MILC Coll., PoS (LAT2005) 203 [hep- lat/ ] N f = 2+1, staggered sea-quarks, 16 3 x48, 20 3 x64, 28 3 x96 a = 0.18, 0.12, fm, L= 2.8, 2.4, 2.4 fm spin ave. 1S energy

light hadron spectroscopy heavy hadron spectroscopy exotic hadrons various “charges” form factors weak matrix elements etc Many applications One of the latest developments The nuclear force Ishii, Aoki & Hatsuda, hep-lat/ (to appear in Phys. Rev. Lett.)

Nuclear Force Why the nuclear force important now? How to extract the nuclear force from QCD ? H. Yukawa, “On the Interaction of Elementary Particles, I”, Proc. Phys. Math. Soc. Japan (1935) H. Bethe, “What holds the Nucleus Together?”, Scientific American (1953) F. Wilczek, “Hard-core revelations”, Nature (2007) Nuclear force nucleus

Modern Nuclear Force from NN scatt. data One-pion exchange by Yukawa (1935)  repulsive core Repulsive core by Jastrow (1950,1951) ...  Multi-pions & heavy mesons

Machleidt and Entem, nucl-th/ High precision NN potentials

2.Maximum mass of neutron stars CAS A remnant Nuclear force Nuclear repulsive core Origin of RC is not known …. But, it is intimately related to 1. Nuclear saturation 3.Ignition of Type II supernovae

Z=0 N=Z ρ(fm -3 ) ρ 0 = 0.16 fm -3 3ρ03ρ0 5ρ05ρ0 Akmal, Pandharipande & Ravenhall, PRC58 (’98) State-of-the-art nuclear EoS E/A (MeV) Nuclear Equation of State

Mass-Radius relation of neutron star in Akmal-Pandharipande-Ravenhall EoS PSR Neutron star binary Vela-X1Cyg-X2 X-ray binaries J Neutron star - WD binary EXO (X-ray bursts) (ρ max ~ 6ρ 0 )

How to extract (bare) NN force in QCD ? unrealistic fundamental difficulty (i) Born-Oppenheimer potential r Takahashi, Doi & Suganuma, hep-lat/ (ii) NN “wave function”  NN potential Ishii, Aoki & Hatsuda, hep-lat/  similar in spirit with phenomenological potentials (phase shift data  NN potential)

Equal time BS amplitude  (r) Nucleon interpolating field: Equal time BS amplitude: Probability amplitude to find nucleonic three-quark cluster at point x and another nucleonic three-quark cluster at point y cf: for π-πscattering, Lin, Martinelli, Sachradja & Testa, NP B169 (2001) CP-PACS Coll, Phys. Rev. D71 (2005) + x y

Local potential: Non-local potential: asymptotic form of  (r)  (= the phase shift) determined by elastic pole interpolating operator independent inelastic contribution: interpolating operator dependent exponentially localized in space magnitude suppressed by E p /E th LS equation : Ishii, Aoki & Hatsuda, hep-lat/ + paper in preparation

time space r M  ∞ E 0 = 2M + V(r) Heavy quark potential time space M = finite E 0 = ground state mass Meson mass Typical measurement of mass : QQ pair

Measurement of  (r) (s-wave) time space x y J y J y + all possible combinations NN potential:

a = fm L = 4.4 fm KEK Simulation details 32 4 lattice Quenched QCD Plaquette gauge action Wilson fermion Periodic (Dirichlet) B.C. for spatial (temporal) direction m  (GeV) N conf as of today m  = 0.89 GeV m N = 1.34 GeV m  = 0.84 GeV m N = 1.18 GeV

BS amplitude  (r) for m  =0.53 GeV 2s+1 L J Ishii, Aoki & Hatsuda, hep-lat/

Yukawa tail mid-range attraction repulsive core 1 S 0 channel 3 S 1 channel NN central potential V c (r) for m  =0.53 GeV 2s+1 L J Ishii, Aoki & Hatsuda, hep-lat/

1 S 0 channel 3 S 1 channel NN central potential V c (r) for m  =0.53 GeV 2s+1 L J Ishii, Aoki & Hatsuda, hep-lat/

Pion exchange attraction for 1 S 0 & 3 S 1 + ghost exchange (quenched artifact) attraction for 1 S 0 repulsion for 3 S 1 Beane & Savage, PLB535 (2002)

Quark mass dependence (preliminary) Ishii, Aoki & Hatsuda, in preparation

Remarks 4. Hyperons ? to be announced in two weeks (INPC2007) 3. Different Interpolating operators ? same phase shift but different V(r) at short distances 1.NN scattering length: fragile object in NN case Luscher’s formula: Luscher, CMP 105 (1986), NPB 354 (1991) But situation is not that simple as “first Born” tells: Born 2. Tensor force ? coupled channel 3 S D 1

N Z LQCD GFMC AMD MCSM Nuclear chart Nuclear force : bridge between one and many