Light-induced instabilities in large magneto-optical traps G. Labeyrie, F. Michaud, G.L. Gattobigio, R. Kaiser Institut Non Linéaire de Nice, Sophia Antipolis,

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

Ion-Induced Instability of Diocotron Modes In Magnetized Electron Columns Andrey Kabantsev University of California at San Diego Physics Department Nonneutral.
C. McGuffey a, W. Schumaker a, S. Kneip b, F. Dollar a, A. Maksimchuk a, A. G. R. Thomas a, and K. Krushelnick a (a) University of Michigan, Center for.
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
Resonances and optical constants of dielectrics: basic light-matter interaction.
William Guerin A random laser with cold atoms Institut Non Linéaire de Nice (INLN) CNRS and Université Nice Sophia-Antipolis.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Simple Harmonic Motion. Analytical solution: Equation of motion (EoM) Force on the pendulum constants determined by initial conditions. The period of.
The story unfolds… James Millen The story unfolds… – Group meeting 12/04/10.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Rydberg & plasma physics using ultra-cold strontium James Millen Supervisor: Dr. M.P.A. Jones Rydberg & plasma physics using ultra-cold strontium.
Studying a strontium MOT – group meeting Studying a strontium MOT James Millen.
Ultracold Plasmas ( Zafar Yasin). Outline - Creation and why considered important? - Characterization. - Modeling. -My Past Research. - Current Research.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Physical Phenomena for TeraHertz Electronic Devices
Light Propagation in Photorefractive Polymers
INTRODUCTION TO PHYSICS OF ULTRACOLD COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 14 February 2008 Institute for.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
Laser Cooling 1. Doppler Cooling – optical molasses. 2. Magneto-optical trap. 3. Doppler temperature.
Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Plasma diagnostics using spectroscopic techniques
Phonon spectrum measured in a 1D Yukawa chain John Goree & Bin Liu.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Can nonlinear dynamics contribute to chatter suppression? Gábor Stépán
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Quantum interference phenomenon Quantum interference phenomenon in the cold atomic cascade system $$ : National Science Council and National Space Program.
Refractive Index Enhancement without Absorption N. A. Proite, J. P. Sheehan, J. T. Green, D. E. Sikes, B. E. Unks, and D. D. Yavuz University of Wisconsin,
Stability and Dynamics in Fabry-Perot cavities due to combined photothermal and radiation-pressure effects Francesco Marino 1, Maurizio De Rosa 2, Francesco.
Wednesday, Apr. 28, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #23 Wednesday, Apr. 28, 2004 Dr. Jaehoon Yu Period.
Double diffusive mixing (thermohaline convection) 1. Semiconvection ( ⇋ diffusive convection) 2. saltfingering ( ⇋ thermohaline mixing) coincidences make.
Effect of nonlinearity on Head-Tail instability 3/18/04.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Synchronism in Large Networks of Coupled Heterogeneous
Parametric Instabilities In Advanced Laser Interferometer Gravitational Wave Detectors Li Ju Chunnong Zhao Jerome Degallaix Slavomir Gras David Blair.
Transverse optical mode in a 1-D chain J. Goree, B. Liu & K. Avinash.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
Duke University, Physics Department and the Fitzpatrick Institute for Photonics · Durham, NC Collective Nonlinear Optical Effects in an Ultracold Thermal.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.
NUMERICAL SIMULATION OF NONLINEAR EFFECTS IN VOLUME FREE ELECTRON LASER (VFEL) K. Batrakov, S. Sytova Research Institute for Nuclear Problems, Belarusian.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Instability of optical speckle patterns in cold atomic gases ? S.E. Skipetrov CNRS/Grenoble (Part of this.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Two beam instabilities in low emittance rings Lotta Mether, G.Rumolo, G.Iadarola, H.Bartosik Low Emittance Rings Workshop INFN-LNF, Frascati September.
Yakup Boran Spring Modern Atomic Physics
Loss of Landau damping for reactive impedance and a double RF system
B. Liu, J. Goree, V. Nosenko, K. Avinash
Superfluorescence in an Ultracold Thermal Vapor
Optical Cooling and Trapping of Macro-scale Objects
Dan Mickelson Supervisor: Brett D. DePaola
Model-Independent Measurement of Excited State Fraction in a MOT
Novel quantum states in spin-orbit coupled quantum gases
Stability and Dynamics in Fabry-Perot cavities due to combined photothermal and radiation-pressure effects Francesco Marino1,4, Maurizio De Rosa2, Francesco.
Electron Acoustic Waves in Pure Ion Plasmas F. Anderegg C. F
Radiation pressure induced dynamics in a suspended Fabry-Perot cavity
Presentation transcript:

Light-induced instabilities in large magneto-optical traps G. Labeyrie, F. Michaud, G.L. Gattobigio, R. Kaiser Institut Non Linéaire de Nice, Sophia Antipolis, France T. Pohl ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, USA

Outline 1. Magneto-Optical Traps (MOTs) in the multiple scattering regime 2. New instability in large MOTs 3. Driven behavior 4. Conclusion

Introduction many body systems with long range interactions interactions in MOTs :  Dalibard, Opt. Commun. 68, 203 (1988) compression force in optically-thick vapors  Walker et al., Phys. Rev. Lett. 64, 408 (1990) long-range repulsive force  MOT size...  Vorozcovs et al., J. Opt. Soc. Am. B 22, 943 (2005) temperature in the multiple scattering regime plasmas & ultracold plasmas stars... neutral cold atoms (light)  Wilkowski et al., Phys. Rev. Lett. 85, 1839 (2000) instabilities in retroreflected MOTs (shadow effect) instabilities in MOTs :

MOT basics  few atoms  (N < 10 4 ) effective detuning : I,  x B 0  at ``   e   kv  Bx kv ,  Bx   v  x force : F   F  F FF temperature k B T   D  size k B T   x 2 independent of N 2. New instability in large MOTs

Long-range interactions in MOTs  multiple scattering regime  many atoms  (N >> 10 4 ) restoring force -  x  photon re-absorption  multiple scattering force F R repulsion  L  R  d   L   R  d I,  Coulomb-like interaction q / e ~ tunableeffective charge I,  x laser attenuation  absorption force F A  compression  L   x non local 2. New instability in large MOTs

MOTs in the multiple scattering regime F R  F A if   r    L  MOT size : R    Walker et al., Phys. Rev. Lett. 64, 408 (1990). net repulsion  density limit inelastic scattering  x (mm) N 2. New instability in large MOTs uniform density without spatial dependence of  with spatial dependence of 

MOT Production and Characterization  vapor cell (Rb 85 )  6 independent trapping beams N  R  6 mm T  40  K photodiode time (ms)  dynamics of MOT photodiode  optical thickness 2. New instability in large MOTs CCD  N, size, density t ILIL BB trapping imaging 

New instability in MOTs spontaneous periodic oscillations for N > N th ( ,  B, I L,...) unstable  Labeyrie et al., Phys. Rev. Lett. 96, (2006). stable 2. New instability in large MOTs

Simple 1-zone model  threshold  ±   ±  kv  ±  Bx F   s  {   } hk  2 e -b 1+4(    )  1 1+4(    )   R   L  x R  e -b  1+4(    )  x 0 R 12 3 attenuated trapping beam 1 non-attenuated trapping beam 2 total repulsive force 3 x  R : negative friction  R th  R > R th  N    G/cm  R th  mm 2. New instability in large MOTs

unstable stable Investigation of threshold 2. New instability in large MOTs  N and  R vary at threshold, but b  1  analytical model  OK

t < 0t > 0 2. New instability in large MOTs Investigation of threshold N   e -t  sin(  t  ) below threshold  (ms)   N overdamped under damped damping when N

below threshold above threshold 2. New instability in large MOTs t < 0t > 0 Investigation of threshold   B (G/cm) critical parameter osc (Hz) 0 (Hz) 0.6  MOT subcritical at threshold  frequency continuous no hysteresis  supercritical Hopf bifurcation

Numerical model N-zone model  dynamics ! Pohl et al., Phys. Rev. A 74, (2006).   Doppler   N < 10 6 test particles   double scattering   position-dependent cross-sections ingredients :   confirms analytical model for threshold   supercritical Hopf bifurcation   complex dynamics with external active motion zone 2. New instability in large MOTs

Driven oscillations below threshold above threshold 3. Driven behavior     sin  t

exc (Hz)      Driven oscillations     sin  t  Hz  exc  osc spontaneous oscillation suppressed harmonics of excitation 3. Driven behavior

Driven oscillations 3. Driven behavior exc  osc resonance at exc  parametric resonance ? exc (Hz)          sin  t

Driven oscillations 3. Driven behavior other resonances...

Conclusion  observation of a new instability in large MOTs competition between compression and repulsive longe-range interaction (light)  mechanism predicted by simple analytical model and numerical simulations perspectives :  better control of experiment  new measurements (critical exponent, larger parameter space,...)  numerical model  quantitative comparison with experiment : dynamics, forced regime,...