CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.

Slides:



Advertisements
Similar presentations
CE ELECTRICAL PRINCIPLES STEADY STATE ANALYSIS OF SINGLE PHASE CIRCUITS UNDER SINUSOIDAL EXCITATION 1 Steady State response of Pure R,L and C &
Advertisements

Chapter 12 RL Circuits.
R,L, and C Elements and the Impedance Concept
Lecture 16 AC Circuit Analysis (1) Hung-yi Lee. Textbook Chapter 6.1.
Alternating Current Circuits
Lesson 20 Series AC Circuits. Learning Objectives Compute the total impedance for a series AC circuit. Apply Ohm’s Law, Kirchhoff’s Voltage Law and the.
Chapter 6(a) Sinusoidal Steady-State Analysis
1 My Chapter 21 Lecture Outline. 2 Chapter 21: Alternating Currents Sinusoidal Voltages and Currents Capacitors, Resistors, and Inductors in AC Circuits.
ELECTRIC CIRCUIT ANALYSIS - I
Series and Parallel AC Circuits
Chapter 10 Sinusoidal Steady-State Analysis
ES250: Electrical Science
A sinusoidal current source (independent or dependent) produces a current That varies sinusoidally with time.
Chapter 33 Alternating Current Circuits CHAPTER OUTLINE 33.1 AC Sources 33.2 Resistors in an AC Circuit 33.3 Inductors in an AC Circuit 33.4 Capacitors.
RLC Circuits. Ohm for AC  An AC circuit is made up with components. Power source Resistors Capacitor Inductors  Kirchhoff’s laws apply just like DC.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 16 Phasor Circuits, AC.
Fundamentals of Electric Circuits Chapter 9
AC STEADY-STATE ANALYSIS SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits with sinusoidal independent sources and modeling of sinusoids in.
1 Alternating Current Circuits Chapter Inductance CapacitorResistor.
Chapter 15 – Series & Parallel ac Circuits Lecture 19 by Moeen Ghiyas 11/10/
Fall 2000EE201Phasors and Steady-State AC1 Phasors A concept of phasors, or rotating vectors, is used to find the AC steady-state response of linear circuits.
Fundamentals of Electric Circuits Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Alternating Current Circuits. Resistance Capacitive Reactance, X C.
Lecture 16: Sinusoidal Sources and Phasors Nilsson , App. B ENG17 : Circuits I Spring May 21, 2015.
Alternating Current (AC) R, L, C in AC circuits
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 15.1 Alternating Voltages and Currents  Introduction  Voltage and Current.
1 ECE 3336 Introduction to Circuits & Electronics Note Set #10 Phasors Analysis Fall 2012, TUE&TH 4:00-5:30 pm Dr. Wanda Wosik.
AC Series-Parallel Circuits Chapter 18. AC Circuits 2 Rules and laws developed for dc circuits apply equally well for ac circuits Analysis of ac circuits.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
1 © Unitec New Zealand DE4401 AC R L C COMPONENTS.
Fundamentals of Electric Circuits Chapter 9
1 ELECTRICAL TECHNOLOGY ET 201  Define series impedances and analyze series AC circuits using circuit techniques.
ELECTRICAL CIRCUIT CONCEPTS
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part I
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Unit 8 Phasors.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CHAPTER I APPLICATION OF CIRCUIT LAWS. 2 Introduction Generally, we require 3 steps to analyze AC Circuit Transform the circuit to the phasor / frequency.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Chapter 31 Lecture 33: Alternating Current Circuits: II HW 11 (problems): 30.58, 30.65, 30.76, 31.12, 31.26, 31.46, 31.56, Due Friday, Dec 11. Final.
Chapter 8 Alternating Current Circuits. AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source An AC circuit.
Alternating-Current Circuits Physics Alternating current is commonly used everyday in homes and businesses throughout the word to power various.
Applied Circuit Analysis Chapter 12 Phasors and Impedance Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Complex Impedances Sinusoidal Steady State Analysis ELEC 308 Elements of Electrical Engineering Dr. Ron Hayne Images Courtesy of Allan Hambley and Prentice-Hall.
Alternating Current Circuits. AC Sources  : angular frequency of AC voltage  V max : the maximum output voltage of AC source.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
A sinusoidal current source (independent or dependent) produces a current That varies sinusoidally with time.
Chapter 10 RC Circuits.
Chapter 9 Sinusoids and Phasors
Chapter 14 Series and Parallel AC Circuits. Objectives Become familiar with the characteristics of a series and parallel ac circuit Find the total impedance.
RC Circuits (sine wave)
1 Chapter 9 Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis.
EE301 Phasors, Complex Numbers, And Impedance. Learning Objectives Define a phasor and use phasors to represent sinusoidal voltages and currents Determine.
Chapter 9 Sinusoids and Phasors
Chapter 9 Sinusoidal Steady-State Analysis
Alexander-Sadiku Fundamentals of Electric Circuits
ELECTRICAL TECHNOLOGY EET 103/4
Ch4 Sinusoidal Steady State Analysis
Chapter 6 Sinusoids and Phasors
ECE 3301 General Electrical Engineering
Alexander-Sadiku Fundamentals of Electric Circuits
2. 2 The V-I Relationship for a Resistor Let the current through the resistor be a sinusoidal given as Is also sinusoidal with amplitude amplitude.
Chapter 9 – Sinusoids and Phasors
CIRCUITS and SYSTEMS – part II
Chapter 9 – Sinusoids and Phasors
CIRCUITS and SYSTEMS – part II
CIRCUITS and SYSTEMS – part I
Presentation transcript:

CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja dystrybuowana jest bezpłatnie

Lecture 2 Analysis of circuits in steady state at sinusoidal excitation

Sinusoidal signal u(t) - instantaneous value of signal U m - maximum value (magnitude) of signal  - initial phase (phase corresponding to t=0)  t+  - phase angle at time t f=1/T - frequency in Hz T - period of sinusoidal signal  - angular frequency measured in radians per second

RMS value of signal For sinusoidal signal voltage current

Steady state of the circuit Steady state of the circuit is the state in which the character of the circuit response is the same as the excitation. It means that at sinusidal excitation the response is also sinusidal of the same frequency. For the need of steady state analysis we introduce the so symbolic method of complex numbers. This method converts all differential and integral equations into algebraic equations of complex character.

Symbolic method for RLC circuit The RLC circuit under analysis The circuit equation in time domain

General solution of circuit The general solution of the circuit in time domain is composed of two components: x(t)=x s (t)+x t (t) Steady state component – part x s (t) of general solution for which the signal has the same character as excitation (at sinusidal excitation the response is also sinusidal of the same frequency). This state is theoretically achieved after intinite time (in practice this time is finite). Transient component - part x t (t) of general solution for which the signal may take different form from excitation (for example at DC excitation it may be sinusoidal or exponential). The general solution is just the sum of these two parts x(t)=x s (t)+x t (t)

Solution in steady state Symbolic represenation of voltage excitation Symbolic represenation of current response Symbolic equation of circuit

Solution in steady state (cont.) After performing the appropriate manipulations we get The complex RMS notations of current and voltage The complex RMS equation of the circuit

Complex represenation of the RLC elements Resistor Inductor Capacitor

Complex impedances Reactance of inductor Reactance of capacitor Impedance of inductor Impedance of capacitor

Final solution of RLC circuit Complex algebraic equation of RLC circuit Complex current Magnitude RMS value of current Phase of current

Kirchhoff’s laws for complex representation KCL KVL Ohm’s complex law Y=1/Z - complex admittance

Symbolic method - summary Conversion: time-complex representation of sources Complex represenattion of RLC elements Kirchhoff’s laws for complex values Solution of complex equations -> complex currents & voltages.

Example Determine the currents in in steady state of the circuit at the following values of parameters: R=10Ω, C=0,0001F, L=5mH, i(t)=7.07sin(1000t) A. Circuit structure

Solution Complex symbolic values of parameters: ω = 1000 I = 5e j0 = 5 Z L = jωL = j5 Z C = -j/(ωC) = -j10 Admittance and impedance of the circuit

Solution (cont.) Voltage and currents

Solution (cont.) Time representation of the signals

Phasor diagram for resistor Equation

Phasor diagram for inductor Equation

Phasor diagram for capacitor Equation

Phasor diagram for RLC circuit The construction starts from the farest branch from the source. For series connected elements of this branch start from current; for parallel connected elements start from voltage. Next we draw alternatingly the currents and voltages for the succeeding branches, approaching in this way the source. The relation of the input voltage towards the input current determines the reactive character of the circuit. –If the input voltage leads its current the character is inductive. – If (opposite) the input voltage lags its current the character of the circuit is capacitive. –When the voltage is in phase with current – the circuit is of resistive character.

Example Draw the phasor diagram for the circuit RLC circuit structure

Construction of phasor diagram