Chapter 3 Telescopes. Gemini North Telescope, Mauna Kea, Hawaii.

Slides:



Advertisements
Similar presentations
Astronomy Notes to Accompany the Text
Advertisements

Chapter 6: Telescopes – Portals of Discovery. Visible light is only one type of electromagnetic radiation emitted by stars Each type of EM radiation travels.
Electromagnetic Radiation and Telescopes
Optics and Telescopes Chapter Six. Telescopes The fundamental purpose of any telescope is to gather more light than the naked eye can In many cases telescopes.
Chapter 5 Telescopes. 5.1 Optical Telescopes The Hubble Space Telescope 5.2 Telescope Size The Hubble Space Telescope 5.3 Images and Detectors Diffraction.
Copyright © 2010 Pearson Education, Inc. No-Name Clickers 4D8AC7641AFE8 A9EDE4ADE3856B DEAEB0CE019A95 E103D23E1C0E1C EEB E040C 1E0AF2E62304FED E0C246EB0FA.
Chapter 6 Optics and Telescopes
Chapter 6 Telescopes: Portals of Discovery. 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning How does your eye form an image? How do.
© 2011 Pearson Education, Inc. Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 5.
Optics and Telescopes Chapter 5 Survey of Astronomy om astro1010-lee.com.
Chapter 3: Telescopes. Images can be formed through reflection or refraction. Reflecting mirror 3.1 Optical Telescopes.
1 Earth’s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth’s atmosphere can absorb certain.
Optics and Telescopes Chapter Six.
Imaging Science Fundamentals Chester F. Carlson Center for Imaging Science Astronomical Imaging Telescopes and Detectors.
Chapter 3: Telescopes. Goals Describe basic types of optical telescopes Explain why bigger is better for telescopes Describe how the Earth’s atmosphere.
Astronomy 101 Section 020 Lecture 6 Optics and Telescopes John T. McGraw, Professor Laurel Ladwig, Planetarium Manager.
January 24, 2006Astronomy Chapter 5 Astronomical Instruments How do we learn about objects too far away for spacecraft? How do telescopes work? Do.
This Set of Slides This set of slides deals with telescopes. Units covered: 26, 27, 28, 29, and 30.
Telescopes and Astronomical Instruments The 2 main points of telescopes are 1)To make images with as much angular information as possible 2)To gather as.
Optics and Telescopes Chapter Six.
Telescopes. Magnification (make things look bigger) easy to make a telescope with good magnification Collection of large amounts of light (see fainter.
Question 1 Modern telescopes use mirrors rather than lenses for all of these reasons EXCEPT 1) Light passing through lenses can be absorbed or scattered.
Telescopes & Light. The Powers of a Telescope Light Gathering Power Light Gathering Power : Astronomers prefer *large* telescopes. A large telescope can.
Chapter 5 Telescopes. 5.1 Optical Telescopes The Hubble Space Telescope 5.2 Telescope Size 5.3 Images and Detectors 5.4 High-Resolution Astronomy 5.5.
Telescopes Chapter 5. Objectives   Telescopes……………Chapter 5 Objectives:   1. To list the parts of a telescope.   2. To describe how mirrors aid.
Land Based Telescopes. Telescopes: "light buckets" Primary functions: 1. ___________ from a given region of sky. 2. ______ light. Secondary functions:
Reflective Refractive Spectro scopy Space Large telescopes How Optical works $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400 $600 $ 600$600 $
Chapter 5.
Chapter 5 Telescopes: “light bucket”. Telescopes have three functions 1.Gather as much light as possible: LGP ∝ Area = πR 2 LGP ∝ Area = πR 2 Why? Why?
4. Telescopes Light gathering power and resolution Optical and radio telescopes Limitations of Earth’s atmosphere and satellite missions. Instruments (prism.
Chapter 6: The Tools of the Astronomer. Telescopes come in two general types Refractors use lenses to bend the light to a focus Reflectors use mirrors.
Chapter 3 Light and Telescopes. What do you think? What is the main purpose of a telescope? Why do stars twinkle?
New Improved Eyes Telescopes and “Invisible” Astronomy.
© 2010 Pearson Education, Inc. Chapter 6 Telescopes: Portals of Discovery.
Optics and Telescopes. Optics and Telescopes: Guiding Questions 1.How do reflecting and refracting telescopes work? 2.Why is it important that professional.
Studying for the Exam Relevant chapters: E, 1, 2 & 3 To prepare for the exam it is helpful to … –review readings –review lecture notes online (esp. concept.
© 2004 Pearson Education Inc., publishing as Addison-Wesley Telescopes.
Tools for Studying Space. © 2011 Pearson Education, Inc. Telescopes.
The Largest Telescopes And Telescopes made to see Invisible E-M Radiation.
© 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley This work is protected by U.S. copyright laws and is provided solely for the use of.
Optics and Telescope Chapter Six. ASTR 111 – 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introducing Astronomy (chap. 1-6) Introduction To Modern Astronomy.
Telescopes Notes.
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 5.
Chapter 6 Telescopes: Portals of Discovery. 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning How does your eye form an image? How do.
5.3 Collecting Light with Telescopes. Our goals for learning How do telescopes help us learn about the universe? Why do we put telescopes into space?
Optics and Telescopes Chapter Six. Introducing Astronomy (chap. 1-6) Introduction To Modern Astronomy I Ch1: Astronomy and the Universe Ch2: Knowing the.
Clicker Questions Chapter 3 Telescopes Copyright © 2010 Pearson Education, Inc.
Telescopes. Light Hitting a Telescope Mirror huge mirror near a star * * * small mirror far from 2 stars In the second case (reality), light rays from.
TELESCOPE TOUR. Radio and visible waves can go through Earth’s atmosphere.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Light & Telescopes (Chapter 5) All of what we know and understand about the stars is the result of observation and analysis of light.
Chapter 5 Telescopes Chapter 5 opener. This composite photograph shows two of the premier optical telescopes available to astronomers today. At the top,
1 Earth’s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth’s atmosphere can absorb certain.
Astronomy: A Beginner’s Guide to the Universe Seventh Edition © 2013 Pearson Education, Inc. Chapter 3 Lecture Telescopes.
ISP Astronomy Gary D. Westfall1Lecture 7 Telescopes Galileo first used a telescope to observe the sky in 1610 The main function of a telescope is.
Universe Tenth Edition Chapter 6 Optics and Telescopes Roger Freedman Robert Geller William Kaufmann III.
Telescopes. Light Hitting a Telescope Mirror huge mirror near a star * * small mirror far from a star In the second case (reality), light rays from any.
Refracting Telescopes 24.2 Tools for Studying Space  A refracting telescope is a telescope that uses a lens to bend or refract light.  Focus The most.
 From the ground the atmosphere distorts images.  Light pollution from streetlights, city lights, car lights, and more hinders the seeing conditions.
Telescopes & Light. History Hans Lippershey Middleburg, Holland –invented the refractor telescope in 1608 Galileo –the first to use a telescope in astronomy.
© 2014 Pearson Education, Inc. Telescopes Portals of Discovery.
Optics and Telescopes Chapter Six. Some Guiding Questions 1.Why is it important that telescopes be large? 2.Why do most modern telescopes use a large.
Telescopes and Astronomical Instruments
Chapter 6 Telescopes: Portals of Discovery
© 2017 Pearson Education, Inc.
Telescopes.
© 2017 Pearson Education, Inc.
Ch. 6 - Astronomical Instruments (Telescopes)
Telescopes & Detectors
Optics and Telescopes Chapter Six.
Presentation transcript:

Chapter 3 Telescopes

Gemini North Telescope, Mauna Kea, Hawaii

Optical telescopes Light buckets Reflectors and refractors Advantages of reflectors Reflecting telescope designs

Reflection and Refraction Reflection - the bouncing of light (or EM radiation) off of a shiny surface Refraction - the bending of light as it travels from one transparent substance to another

Figure Reflecting Mirror

Figure 3.1 Analogy - Light Bucket

Figure Refracting Lens

Figure Image Formation

Figure Reflectors and Refractors

Reflecting Telescope Advantages No chromatic aberration No UV or IR absorption Supported at back (lenses supported at edges) Only has one optical surface

Figure Reflecting Telescopes

Figure 3.6 Keck Telescope

Discovery 3-1 The Hubble Space Telescope

Detectors Photographic film Charge-coupled devices or CCDs CCDs more efficient (75% vs. 5%) CCDs collect data in digital format

Figure 3.7acd CCD Chip

Figure 3.7b CCD Chip

Figure Image Processing a) ground based, b) HST flawed, c) image processed, d) HST fixed

Light-gathering power Depends on collecting area of mirror Area  diameter 2

Figure 3.9 Sensitivity Same Exposure time, but (b) taken with twice the size telescope as (a)

Figure Mauna Kea Observatory a) Aerial view, b) Subaru telescope one piece mirror

Figure VLT Observatory - Paranal Observatory, Atacama, Chile

Resolving power Ability to see fine detail Larger diameter mirror resolves finer detail More detail at shorter wavelengths Limited by diffraction

Figure Resolution (a) 10’ (b) 1’ (c) 5” (d) 1”

Figure Diffraction

Seeing Atmospheric blurring Seeing disk - circle over which star’s light is spread Stars twinkle Planets don’t

Figure Atmospheric Turbulence

New telescope designs Active optics - control environment and mechanics of telescope Adaptive optics - control mirror shape in real time to remove effects of atmosphere

Figure Active Optics (a) without (b) with active optics

Figure Adaptive Optics

Figure Radio Telescope

DirecTV dish at far southern latitudes Large size Low angle El Chalten, Argentina

Figure Arecibo Observatory

Figure Radio Galaxy

Interferometer Telescopes in an array Combine signals Increases resolving power Resolving power determined by array size Photon-gathering power determined by total area of reflectors

Figure VLA Interferometer

Figure Interferometry

Figure Radio-optical Comparison

Figure Optical Interferometry

Figure 3.24 Infrared Telescope

Figure Infrared Images

Figure 3.26 Ultraviolet Images

Figure X-ray Telescope Reflection at grazing angles

Figure 3.28 Chandra (X-ray) Observatory

Figure 3.29 X-Ray Image of Supernova Remnant

Figure Gamma-ray Image Gamma-ray blazar in 3C279

Table 3-1 Astronomy at Many Wavelengths Table 3.1

Figure 3.31 Milky Way Galaxy at Multiple Wavelengths