NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,

Slides:



Advertisements
Similar presentations
NEMO-III Status and prospects. 12 December 2005 HEP group Christmas meeting Vladimir Vasiliev.
Advertisements

NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
Double Beta Decay review
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
The maximum likelihood method used to analyse NEMO-3 results interest of the method technical explanation of the method very preliminary results obtained.
Neutron background measurements at LNGS Gian Luca Raselli INFN - Pavia JRA1 meeting, Paris 14 Feb
SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO.
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
M. Dracos 1 Double Beta experiment with emulsions?
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory
Neutron background measurement at LNGS: present status Measurement carried out in collaboration between LNGS ILIAS-JRA1 and ICARUS groups.
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Double Beta Decay Present and Future
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
Double beta search : experimental view Laurent SIMARD, LAL - Orsay 6 th Rencontres du Vietnam, Hanoi, 6 th -12 nd August 2006.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
ZSJ IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymentach NEMO-3 i SuperNEMO Kraków,
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
19 July 2012Page 1 Neutrino Mass Julia Sedgbeer High Energy Physics, Blackett Laboratory.
SuperNEMO Simulations Darren Price University of Manchester July, 2005.
Status of COBRA 6 th SNOLAB Workshop, Picture courtesy
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Double beta decay and neutrino physics Osaka University M. Nomachi.
Probing neutrino mass with SuperNEMO Ruben Saakyan Ulisse at LSM Workshop 30 June 2008.
Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.
Neutrino Ettore Majorana Observatory
Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
 decay:Present and Future Ruben Saakyan UCL 8 November 2004 Manchester University Particle Physics seminar PREVIEW Motivation Present status Status of.
Zakład Spektroskopii Jądrowej IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymencie NEMO-3 Warszawa,
1 TAUP - September 7, 2015S. Blot Investigating ββ decay with NEMO-3 and SuperNEMO Summer Blot, on behalf of the NEMO-3 and SuperNEMO experiments 7 September.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
ILIAS JRA2 : WG1+WG2 Se82, production and purification Cascina, November 3rd, 2005Dominique Lalanne.
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Nasim Fatemi-Ghomi, Group Christmass Meeting December Nasim Fatemi-Ghomi Double Beta Decay Study of 150 Nd at NEMO3 (The magic isotope!!)
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
V. Egorov. JINR + LSM V. Egorov = The love story 1991 Orsay S.Jullian and D.Lalanne proposed to bring our 2β-spectrometer to Modane 1993 TGV.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
SuperNEMO collaboration
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
SuperNEMO 1st Report to Oversight Committee
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
Search for 0nbb decay with SuperNEMO
• • • Ge measurements for SuperNEMO
Double Beta experiment using nuclear emulsions?
Double Beta experiment with emulsions?
Presentation transcript:

NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux, France Charles University, Praha, Czech Republic CTU, Praha, Czech Republic INEEL, Idaho Falls, USA IReS, IN2P3-CNRS et Université de Strasbourg, France ITEP, Moscou, Russia JINR, Dubna, Russia Jyvaskyla University, Finland 1 LAL, IN2P3-CNRS et Université Paris-Sud, France LSCE, CNRS Gif sur Yvette, France LPC, IN2P3-CNRS et Université de Caen, France Mount Holyoke College, USA RRC Kurchatov Institute, Moscow, Russia Saga University, Saga, Japon UCL, London, Great-Britain Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

Plan of the talk: NEMO-3 Detector Measurement of  decay for several nuclei Search for  decay with 100 Mo and 82 Se

3 m 4 m B (25 G) 20 sectors Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004 Source : 10 kg of  isotopes cylindrical, S = 20 m 2, e ~ 60 mg/cm 2 Tracking detector : drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter : 1940 plastic scintillators coupled to low radioactivity PMTs Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water  boron) Able to identify e , e ,  and  The NEMO3 detector Fréjus Underground Laboratory : 4800 m.w.e.

 isotope foils scintillators PMTs Calibration tube Cathodic rings Wire chamber Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

AUGUST 2001 Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

coil Iron shield Water tank wood NEMO-3 Opening Day, July 2002 Start taking data 14 February 2003 Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

100 Mo kg Q  = 3034 keV  decay isotopes in NEMO-3 detector 82 Se kg Q  = 2995 keV 116 Cd 405 g Q  = 2805 keV 96 Zr 9.4 g Q  = 3350 keV 150 Nd 37.0 g Q  = 3367 keV Cu 621 g 48 Ca 7.0 g Q  = 4272 keV nat Te 491 g 130 Te 454 g Q  = 2529 keV  measurement External bkg measurement  search Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004 (All the enriched isotopes produced in Russia)

Drift distance 100 Mo foil Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: Geiger plasma longitudinal propagation Scintillator + PMT Deposited energy: E 1 +E 2 = 2088 keV Internal hypothesis: (  t) mes –(  t) theo = 0.22 ns Common vertex: (  vertex)  = 2.1 mm Vertex emission (  vertex) // = 5.7 mm Vertex emission Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: Criteria to select  events: 2 tracks with charge < 0 2 PMT, each > 200 keV PMT-Track association Common vertex Internal hypothesis (external event rejection) No other isolated PMT (  rejection) No delayed track ( 214 Bi rejection)  events selection in NEMO-3 Typical  2 event observed from 100 Mo Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004 Trigger: 1 PMT > 150 keV 3 Geiger hits (2 neighbour layers + 1) Trigger rate = 7 Hz  events: 1 event every 1.5 minutes

Tracking Detector:  99.5 % Geiger cells ON  Vertex resolution: 2 e  channels (482 and 976 keV) using 207 Bi sources at 3 well known positions in each sector   (  Vertex) = 0.6 cm  // (  Vertex) = 1.3 cm (Z=0)  e  /e  separation with a magnetic field of 25 G ~ 3% confusion at 1 MeV -- --  Vertex  Vertex = distance between the two vertex Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004 Time Of Flight:  Time Resolution (  channel)  250 ps at 1 MeV ToF (external crossing e  ) > 3 ns external crossing e  totaly rejected External Background  events from the foil (  t mes –  t calc ) external hypo. (ns) (  t mes –  t calc ) internal hypo. (ns) Calorimeter:  97% of the PMTs+scintillators are ON  Energy Resolution: calibration runs (every ~ 40 days) with 207 Bi sources 17%14% FWHM (1 MeV) Int. Wall 3" PMTs Ext. Wall 5" PMTs 207 Bi 2 conversion e  482 keV and 976 keV 482 keV 976 keV FWHM = 135 keV (13.8%)  Daily Laser Survey to control gain stability of each PM  gamma: efficiency ~ keV, E thr = 30 keV Expected Performance of the detector has been reached Performance of the detector

Measurement of  decay in NEMO-3 Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

(Data 14 Feb – 22 Mar. 2004) T 1/2 = 7.72  0.02 (stat)  0.54 (syst)  y 100 Mo 2  2 preliminary results 4.57 kg.y Cos(  ) Angular Distribution Background subtracted 2  2 Monte Carlo Data events 6914 g days S/B = 45.8 NEMO Mo E 1 + E 2 (keV) Sum Energy Spectrum events 6914 g days S/B = 45.8 NEMO Mo Data Background subtracted 2  2 Monte Carlo Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

Simkovic, J. Phys. G, 27, 2233, 2001 Single electron spectrum different between SSD and HSD 100 Mo 2  2 Single Energy Distribution 2  2 HSD Monte Carlo HSD higher levels Background subtracted Data 2  2 SSD Monte Carlo Background subtracted Data SSD Single State HSD: T 1/2 = 8.61  0.02 (stat)  0.60 (syst)  y SSD: T 1/2 = 7.72  0.02 (stat)  0.54 (syst)  y 100 Mo 2  2 single energy distribution in favour of Single State Dominant (SSD) decay 4.57 kg.y E 1 + E 2 > 2 MeV 4.57 kg.y E 1 + E 2 > 2 MeV HSD, higher levels contribute to the decay SSD, 1  level dominates in the decay (Abad et al., 1984, Ann. Fis. A 80, 9) 100 Mo 00 100 Tc 11   /ndf = 139. / 36   /ndf = 40.7 / 36 NEMO-3 E single (keV) Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

Background subtracted 82 Se T 1/2 = 10.3  0.2 (stat)  1.0 (syst)  y 116 Cd if SSD T 1/2 = 2.8  0.1 (stat)  0.3 (syst)  y if HSD T 1/2 = 3.05  0.1 (stat)  0.3 (syst)  y 150 Nd T 1/2 = 9.7  0.7 (stat)  1.0 (syst)  y 96 Zr T 1/2 = 2.0  0.3 (stat)  0.2 (syst)  y 82 Se 116 Cd 150 Nd 2  2 preliminary results for other nuclei 96 Zr Data  simulation Data  simulation Data  simulation Data  simulation NEMO g days 2385 events S/B = 3.3 NEMO g days 72 events S/B = g days 449 events S/B = g days 1371 events S/B = 7.5 E 1 +E 2 (keV) E 1 +E 2 (MeV) Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

Search for  decay in NEMO-3 Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

 External Background 208 Tl (PMTs) Measured with (e ,  ) external events ~ 10  3  -like events year  1 kg  1 with 2.8<E 1  E 2 <3.2 MeV  Analysis: Background Measurement <  Mo metal. 400   Se <  Mo comp. A (  Bq/kg) HPGe meas. A (  Bq/kg) from (e , N  ) sources In agreement with HPGe measurements  208 Tl impurities inside the foils Measured with (e ,2 , (e ,3  events coming from the foil ~ 0.1  -like events year  1 kg  1 with 2.8<E 1  E 2 <3.2 MeV  100 Mo  decay T 1/2 = y (SSD) ~ 0.3  -like events year  1 kg  1 with 2.8<E 1 +E 2 <3.2 MeV  External Neutrons and High Energy gamma Measured with (e ,e  ) int events with E 1  E 2  4 MeV  0.02  -like events year  1 kg  1 with 2.8<E 1  E 2 <3.2 MeV ~ Only 2 (e ,e  ) int events with E 1  E 2  4 MeV observed after 260 days of data (without boron) 4253 keV (26 Mar. 2003) 6361 keV (8 Nov. 2003) In agreement with expected background Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004 NEMO-3 can measure each component of its background !

Radon in the NEMO-3 gas of the wire chamber  Analysis: Background Measurement Due to a tiny diffusion of the radon of the laboratory inside the detector A(Radon) in the lab ~15 Bq/m Rn (3.8 days) 218 Po 214 Pb 214 Bi 214 Po 210 Pb    s ~ 1  -like events/year/kg with 2.8 < E 1 +E 2 < 3.2 MeV Radon is the dominant background today for  search in NEMO-3 !!! Two independant measurements of radon in NEMO-3 gas Good agreement between the two measurements  Radon detector at the input/output of the NEMO-3 gas ~ 20 counts/day for 20 mBq/ m 3  (1e  + 1  ) channel in the NEMO-3 data: Delayed tracks (<700  s) to tag delayed  from 214 Po 214 Bi  214 Po (164  s)  210 Pb ~ 200 counts/hour for 20 mBq/m 3 A(Radon) in NEMO-3  mBq/m 3 Decay in gas  delayed  214 Bi  214 Po (164  s)  210 Pb   Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

 Analysis with 100 Mo V-A: T 1/2 (  ) > y V+A: T 1/2 > y with  E 1 - E 2  > 800 keV Majoron: T 1/2 > y with E single > 700 keV Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June Mo     7.0 TOTAL Monte-Carlo 2.6<E 1 +E 2 <3.2 50DATA 23.5  6.7 Radon M-C 32.3  Mo 2  2  M-C 100 Mo 6914 g 265 days Data  Monte-Carlo Radon Monte-Carlo E 1 +E 2 (MeV)  arbitrary unit PRELIMINARY 2.6<E 1 +E 2 <3.2 Cu + nat Te Te 265 days Radon Monte-Carlo Data E 1 +E 2 (MeV) Cu + nat Te Te  3.4 ____ 2.6  ____ 2.6<E 1 +E 2 <3.2

100 Mo  likelihood analysis 3 variables used for the likelihood Ec 1 + Ec 2 sum of the kinetic energies of the 2 e  Ec min energy of the e  of minimal energy Cos  angle between the two tracks Ec = Energy at the exit of the 100 Mo foil = Energy deposited in scintillator (E) + energy losses in the tracking detector x   is the free parameter N  N tot L calculated with  events Ec 1 +Ec 2 >2 MeV -- -- Cos  Ec 1 Ec 2 E1E1 E2E2 ! Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

100 Mo  likelihood analysis Ec 1 +Ec 2 (keV) Data  Monte-Carlo Radon Monte-Carlo 100 Mo 6914 g days 4.10 kg.y PRELIMINARY Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004 Data  Monte-Carlo Radon Monte-Carlo  T 1/2 = Mo 6914 g days 4.10 kg.y Ec 1 +Ec 2 (keV) Previous limit V-A: T 1/2 (  ) > y (Elegant V, Ejiri et al., 2001) V-A: T 1/2 (  ) > y (90% C.L.) V+A: T 1/2 > y (90% C.L.) -Log(Likelihood) x   N  N tot

Previous limit V-A: T 1/2 (  ) > y (NEMO-2) Arnold et al. Nucl. Phys. A636 (1998) 82 Se  likelihood analysis PRELIMINARY Data  Monte-Carlo Radon Monte-Carlo 82 Se 932 g days 0.55 kg.y Data  Monte-Carlo Radon Monte-Carlo 82 Se 932 g days 0.55 kg.y Ec 1 +Ec 2 (keV) V-A: T 1/2 (  ) > y (90% C.L.) V+A: T 1/2 > y (90% C.L.) Majoron: T 1/2 > y (90% C.L.) Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

Limit on the effective mass of the Majorana neutrino, on Majoron and on V+A Limits on T 1/2 90% C.L. Limit on Majoron 100 Mo: T 1/2 > y  < (5.3 – 8.5) 10  5 Simkovic (1999), Stoica (1999) 82 Se: T 1/2 > y  < (0.7 – 1.6) 10  4 Simkovic (1999), Stoica (2001) Limit on V+A 100 Mo: T 1/2 > y  < (1.5 – 2.0) 10  6 Tomoda (1991), Suhonen (1994) 82 Se: T 1/2 > y <  6 Tomoda (1991) Simkovic et al., Phys. Rev. C60 (1999) Stoica, Klapdor, Nucl. Phys. A694 (2001) Simkovic et al., Phys. Rev. C60 (1999) Stoica, Klapdor, Nucl. Phys. A694 (2001) Caurier et al., Phys. Rev. Lett (1996) Limit on the Majorana neutrino effective mass 100 Mo: T 1/2 (  ) > y  m  < 0.7 – 1.2 eV 82 Se: T 1/2 (  ) > y  m  < 1.3 – 3.6 eV Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

May 2004 : Tent surrounding the detector Today: A( 222 Rn) in the LSM ~ 15 Bq/m 3 August 2004 : Radon-free SuperKamiokande-like Air Factory Expected activity: A( 222 Rn) ~ 0.2 Bq/m m 3 /h 500 kg -40 o C Free-Radon Purification System in construction Today Radon is the dominant background for NEMO-3 May 2004 Expected Purification Factor ~ 75 Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004 Factor ~ 10 too high

NEMO-3 Expected sensitivity (after Radon purification) Background :  External Background is negligible  Internal Background: 208 Tl : 100  Bq/kg for 100 Mo 300  Bq/kg for 82 Se 214 Bi : < 300  Bq/kg ~ 0.1 count kg  1 y  1 with 2.8<E 1 +E 2 <3.2 MeV   : T 1/2 = y (SSD) ~ 0.3 count kg  1 y  1 with 2.8<E 1 +E 2 <3.2 MeV 5 years of data 6914 g of 100 Mo T 1/2 (  )  y (90% C.L.)  m  < 0.2 – 0.35 eV 932 g of 82 Se T 1/2 (  )  y (90% C.L.)  m  < 0.65 – 1.8 eV (conservative limit) Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004

CONCLUSIONS  NEMO-3 Detector running since 14 Feb Expected performance of the detector has been reached !   preliminary results for 100 Mo, 82 Se, 96 Zr, 116 Cd and 150 Nd already more than  events collected 100 Mo: in favour of Single State Dominance (SSD) 100 Mo  decay to excited state has been measured with ~ 4   Preliminary T 1/2 (  ) limit (216.4 days of data): 100 Mo (4.10 kg.y) T 1/2 (  ) > y   m  < 0.7 – 1.2 eV 82 Se (0.55 kg.y) T 1/2 (  ) > y   m  < 1.3 – 3.6 eV  Level of backgounds as excepted except Radon ~ 10 times too high Free radon purification system in operation in August 2004 Supression factor ~ 75  Expected sensitivity in 5 years after radon purification 100 Mo: T 1/2 (  ) > y  m  < 0.2 – 0.35 eV 82 Se: T 1/2 (  ) > y  m  < 0.65 – 1.8 eV Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004