Over Lesson 2–2 5-Minute Check 1 A.True; 12 + (–4) = 8, and a triangle has four sides. B.True; 12 + (–4)  8, and a triangle has four sides. C.False; 12.

Slides:



Advertisements
Similar presentations
Conditional Statements
Advertisements

2.1 Conditional Statements
Conditional Statements Conditional - Conditionals are formed by joining two statements with the words if and then: If p, then q. The if-statement is the.
Conditional Statements
Lesson 2-3 Conditional Statements. Ohio Content Standards:
Conditional Statements youtube. com/watch SOL: G.1a SEC: 2.3.
Welcome to Interactive Chalkboard 2.3 Conditional Statements.
Conditional Statements
Chapter 2.3 Conditional Statements. Conditional Statement.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–2) Then/Now New Vocabulary Key Concept: Conditional Statement Example 1: Identify the Hypothesis.
conditional statement contrapositive
2.3 Analyze Conditional Statements. Objectives Analyze statements in if-then form. Analyze statements in if-then form. Write the converse, inverse, and.
Bellwork Find m  1 and m  2 if m  1 = 8x + 18 and m  2 = 16x – 6 and m  1 and m  2 are supplementary. A.m  1 = 106, m  2 = 74 B.m  1 = 74, m 
2-3 Conditional Statements You used logic and Venn diagrams to determine truth values of negations, conjunctions, and disjunctions. Analyze statements.
Geometry CH 4-1 Using Logical Reasoning Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Learning Targets I can recognize conditional statements and their parts. I can write the converse of conditional statements. 6/1/2016Geometry4.
Lesson 2-3 Conditional Statements. 5-Minute Check on Lesson 2-2 Transparency 2-3 Use the following statements to write a compound statement for each conjunction.
2.2 Conditional Statements You can describe some mathematical relationships using a variety of if-then statements. A conditional – an if-then statement.
Concept The word if is not part of the hypothesis. The word then is not part of the conclusion.
Conditional Statements
Conditional Statements
Conditional Statements
2-3 C ONDITIONALS. S TATEMENTS Conditional statement A statement that can be written in if-then form If-Then statement If p, then q “p” and “q” are statements.
Chapter Conditional statements. * Identify, write, and analyze the truth value of conditional statements. * Write the inverse, converse, and contrapositive.
Warm Up Determine if each statement is true or false. 1. The measure of an obtuse angle is less than 90°. 2. All perfect-square numbers are positive. 3.
MM1G2.b. Understand and use the relationships among the statement and it converse inverse and contrapositive. Destiny and Scott.
Over Lesson 2–1 5-Minute Check 1 A.30 B.34 C.36 D.40 Make a conjecture about the next item in the sequence. 1, 4, 9, 16, 25.
2-3 Conditional Statements- Related What are the three related conditional statements? How are the three related conditional statements made?
2.3 Conditional Statements 0 Conditional statement- a statement that can be written in if-then form.
Splash Screen Today in Geometry Lesson 2.1: Inductive Reasoning Lesson 2.2: Analyze conditional statements.
Holt McDougal Geometry 2-2 Conditional Statements 2-2 Conditional Statements Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
Splash Screen. Lesson Menu Five-Minute Check (over Lesson 2–2) NGSSS Then/Now New Vocabulary Key Concept: Conditional Statement Example 1: Identify the.
2.2 Conditional Statements Objective: Students will analyze statements in if-then form and write the converse, inverse, and contrapositive of if-then statements.
2-1 Conditional Statements M11.B.2 Objectives: 1) To recognize conditional statements. 2) To write converses of conditional statements.
Entry Task Determine if each statement is true or false. 1. The measure of an obtuse angle is less than 90°. 2. All perfect-square numbers are positive.
CONDITIONAL STATEMENTS Intro to AlgebraFarris 2015.
Holt Geometry 2-2 Conditional Statements 2-2 Conditional Statements Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Transparency 2 Review: Lesson 2-1 Mini-Quiz. Class Greeting.
Conditional Statements LESSON 2–3. Lesson Menu Five-Minute Check (over Lesson 2–2) TEKS Then/Now New Vocabulary Key Concept: Conditional Statement Example.
Lesson 3 Menu Warm-up Problems. Lesson 3 MI/Vocab conditional statement if-then statement hypothesis conclusion related conditionals converse Analyze.
Conditional Statements
Objectives Students will…
Conditional Statements
Objectives Identify, write, and analyze the truth value of conditional statements. Write the inverse, converse, and contrapositive of a conditional statement.
Splash Screen.
Splash Screen.
2-1 Vocabulary conditional statement hypothesis/conclusion
2-3 Conditional Statements
Splash Screen.
Make a conjecture about the next item in the sequence. 1, 4, 9, 16, 25
Splash Screen.
Conditional Statements
Lesson 2-3: Conditional Statements
Conditional Statements
Do Now! 1. Evaluate 5x2 – 3x for x = 2 Solve: 3(11x – 7) = 13x + 25.
SWBAT analyze statements in if-then form.
Conditional Statements
Conditional Statements
Chapter 2 Reasoning and Proof.
Welcome to Interactive Chalkboard
Splash Screen.
Splash Screen.
Conditional Statements
Conditional Statements
Conditional Statements
Conditional Statements
Conditional Statements
Logic and Reasoning.
Conditional Statements
Presentation transcript:

Over Lesson 2–2 5-Minute Check 1 A.True; 12 + (–4) = 8, and a triangle has four sides. B.True; 12 + (–4)  8, and a triangle has four sides. C.False; 12 + (–4) = 8, and a triangle has four sides. D.False; 12 + (–4)  8, and a triangle has four sides. Use the following statements to find the truth value of p and r. Write the compound statement. p: 12 + (–4) = 8 q: A right angle measures 90 degrees. r: A triangle has four sides. Bell Ringer Please complete this problem at the end of your cornell notes from last class.

Over Lesson 2–2 5-Minute Check 2 Use the following statements to find the truth value of q or r. Write the compound statement. p: 12 + (–4) = 8 q: A right angle measures 90 degrees. r: A triangle has four sides. A.True; a right angle measures 90 degrees, or a triangle has four sides. B.True; a right angle measures 90 degrees, or a triangle does not have four sides. C.False; a right angle does not measure 90 degrees, or a triangle has four sides. D.False; a right angle measures 90 degrees, or a triangle has four sides.

Over Lesson 2–2 5-Minute Check 3 Use the following statements to find the truth value of ~p or r. Write the compound statement. p: 12 + (–4) = 8 q: A right angle measures 90 degrees. r: A triangle has four sides. A.True; 12 + (–4) = 8, or a triangle has four sides. B.True; 12 + (–4)  8, or a triangle has four sides. C.False; 12 + (–4)  8, or a triangle does not have four sides. D.False; 12 + (–4)  8, or a triangle has four sides.

Over Lesson 2–2 5-Minute Check 4 Use the following statements to find the truth value of q and ~r. Write the compound statement. p: 12 + (–4) = 8 q: A right angle measures 90 degrees. r: A triangle has four sides. A.True; a right angle does not measure 90 degrees or a triangle has four sides. B.True; a right angle measures 90 degrees and a triangle does not have four sides. C.False; a right angle does not measure 90 degrees and a triangle does not have four sides. D.False; a right angle does not measure 90 degrees and a triangle has four sides.

Over Lesson 2–2 5-Minute Check 5 Use the following statements to find the truth value of ~p or ~q. Write the compound statement. p: 12 + (–4) = 8 q: A right angle measures 90 degrees. r: A triangle has four sides. A.True; 12 + (–4) = 8, or a right angle measures 90 degrees. B.True; 12 + (–4)  8, or a right angle does not measure 90 degrees. C.False; 12 + (–4) = 8, or a right angle measures 90 degrees. D.False; 12 + (–4)  8, or a right angle does not measure 90 degrees.

Over Lesson 2–2 5-Minute Check 6 A.a or b B.a and b C.~a D.~b Consider two statements a and b. Given that statement a is true, which of the following statements must also be true?

Then/Now HW Answers for Page : (#1-#8) ALL, #10, (#17-#31) ALL, #33

Then/Now HW Answers for Page : (#1-#8) ALL, #10, (#17-#31) ALL, #33

Then/Now HW Answers for Page : (#1-#8) ALL, #10, (#17-#31) ALL, #33

Then/Now HW Answers for Page : (#1-#8) ALL, #10, (#17-#31) ALL, #33

Then/Now HW Answers for Page : (#1-#8) ALL, #10, (#17-#31) ALL, #33

Then/Now You used logic and Venn diagrams to determine truth values of negations, conjunctions, and disjunctions. Analyze statements in if-then form. Write the converse, inverse, and contrapositive of if-then statements.

Vocabulary conditional statement if-then statement hypothesis conclusion related conditionals converse inverse contrapositive logically equivalent

Concept

Example 1 Identify the Hypothesis and Conclusion A. Identify the hypothesis and conclusion of the following statement. Answer:Hypothesis: A polygon has 6 sides. Conclusion: It is a hexagon. If a polygon has 6 sides, then it is a hexagon. hypothesis conclusion

Example 1 Identify the Hypothesis and Conclusion B. Identify the hypothesis and conclusion of the following statement. Tamika will advance to the next level of play if she completes the maze in her computer game. Answer:Hypothesis: Tamika completes the maze in her computer game. Conclusion: She will advance to the next level of play.

Example 2 A.If an octagon has 8 sides, then it is a polygon. B.If a polygon has 8 sides, then it is an octagon. C.If a polygon is an octagon, then it has 8 sides. D.none of the above A. Which of the following is the correct if-then form of the given statement? A polygon with 8 sides is an octagon.

Example 2 A.If an angle is acute, then it measures less than 90°. B.If an angle is not obtuse, then it is acute. C.If an angle measures 45°, then it is an acute angle. D.If an angle is acute, then it measures 45°. B. Which of the following is the correct if-then form of the given statement? An angle that measures 45° is an acute angle.

Example 3 Truth Values of Conditionals A. Determine the truth value of the conditional statement. If true, explain your reasoning. If false, give a counterexample. If you subtract a whole number from another whole number, the result is also a whole number. Answer:Since you can find a counterexample, the conditional statement is false. Counterexample: 2 – 7 = –5 2 and 7 are whole numbers, but –5 is an integer, not a whole number. The conclusion is false.

Concept

Example 4 Related Conditionals Conditional:First, rewrite the conditional in if-then form. If an animal is a bat, then it can fly. This statement is true. Converse:If an animal can fly, then it is a bat. Counterexample: A bird is an animal that can fly, but it is not a bat. The converse is false.

Example 4 Related Conditionals Inverse:If an animal is not a bat, then it cannot fly. Counterexample: A bird is not a bat, but it is an animal that can fly. The inverse is false. Contrapositive:If an animal cannot fly, then it is not a bat. The contrapositive is true.

Example 4 Related Conditionals CheckCheck to see that logically equivalent statements have the same truth value. Both the conditional and contrapositive are true.  Both the converse and inverse are false. 

Then/Now HW: Pages (#1-#8) ALL, #10, #12, #14, (#26-#31) ALL, (#40-#52) ALL

Then/Now