TU Delft IRI-ST Inorganic Scintillators in Medical-imaging Detectors C.W.E. van Eijk A msterdam, 9 September 2002.

Slides:



Advertisements
Similar presentations
6: Positron Emission Tomography
Advertisements

1 Proton detection with the R3B calorimeter, two layer solution IEM-CSIC sept report MINISTERIO DE EDUCACIÓN Y CIENCIA CONSEJO SUPERIOR DE INVESTIGACIONES.
Chapter 8 Planar Scintigaraphy
Fysisk institutt - Rikshospitalet 1. 2 Overview Gamma camera Positron emission technology (PET) Computer tomography (CT) Proton therapy Electrical impedance.
Synergies Between Calorimetry and PET William W. Moses Lawrence Berkeley National Laboratory March 26, 2002 Outline: –Fundamentals of PET –Comparison of.
Medical Imaging Mohammad Dawood Department of Computer Science University of Münster Germany.
Medical Imaging Mohammad Dawood Department of Computer Science University of Münster Germany.
Tests of scintillators CsI, CsI(Na), BGO, NaI(Tl) CsI(Tl)
Observation of Fast Scintillation of Cryogenic PbI 2 with VLPCs William W. Moses, 1* W.- Seng Choong, 1 Stephen E. Derenzo, 1 Alan D. Bross, 2 Robert Dysert,
ipno.in2p3.fr Milano - October 2006IPNO-RDD-Jean Peyré1 Measurements of CsI(Tl) Crystals with PMT and APD Jean Peyré Milano - Oct 2006.
Nustar/crystal simulations B. Genolini Crystal: CsI(Tl) (Saint Gobain), wrapped with reflector (VM2000, Tyveck?) Geometry:
Crystals and related topics J. Gerl, GSI NUSTAR Calorimeter Working Group Meeting June 17, 2005 Valencia.
Planar scintigraphy produces two-dimensional images of three dimensional objects. It is handicapped by the superposition of active and nonactive layers.
Spatial & Energy resolutions (exp.& MC) for the Axial HPD-PET concept with YAP and LYSO crystals from the thesis works of Ignazio Vilardi Anna Palasciano.
High spatial resolution measurement of depth-of-interaction of a PET LSO crystal Aliz Simon a László Balkay b, István Chalupa b, Gábor Kalinka a, András.
Very High Resolution Small Animal PET Don J. Burdette Department of Physics.
Novel high resolution detectors for Positron Emission Tomography (PET)
RAD2012, Nis, Serbia Positron Detector for radiochemistry on chip applications R. Duane, N. Vasović, P. LeCoz, N. Pavlov 1, C. Jackson 1,
Absolute light output determination of crystal scintillators
Chapter 6: Digital Radiographic Imaging
Medical Image Analysis Medical Imaging Modalities: X-Ray Imaging Figures come from the textbook: Medical Image Analysis, Second Edition, by Atam P. Dhawan,
Simulation Needs in PET (Positron Emission Tomography)
Department of Radiology UNIVERSITY OF PENNSYLVANIA 1 Investigation of LaBr 3 Detector Timing Resolution A.Kuhn 1, S. Surti 1, K.S. Shah 2, and J.S. Karp.
Development of New Detectors for PET Imaging at BNL DOE/JLAB Meeting Bethesda, MD May 20, 2004 Craig Woody Physics Dept Brookhaven National Lab RatCAPBeta.
Kent Burr, Adrian Ivan, Don Castleberry, Jim LeBlanc Detector Technology Lab, GE Research Design of Scintillator Arrays for Dual-End Depth-of- Interaction.
Medical Image Analysis Dr. Mohammad Dawood Department of Computer Science University of Münster Germany.
Introduction to Medical Imaging Imagining Modalities.
-1- 1st European Conference on Molecular Imaging Technology 9-12 May May 2006 Investigation of the LabPET TM Detector and Electronics for Photon-Counting.
A novel gamma-ray detector with sub-millimeter resolutions using a monolithic MPPC array with pixelized Ce:LYSO and Ce:GGAG scintillators Takuya Kato J.Kataoka,
Biomedical Mechatronics Lab M ONTE C ARLO M ODELING AND A NALYSIS OF S TRUCTURED C S I S CINTILLATOR - COUPLED P IXEL D ETECTORS Chang Hwy Lim, Ho Kyung.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
1 INTRODUCTION TO THE PHYSICS OF DIAGNOSTIC IMAGING Outline of Course Brief History Common Terminology Imaging Modalities.
Professor Brian F Hutton Institute of Nuclear Medicine University College London Emission Tomography Principles and Reconstruction.
Optimization of Detectors for Time of Flight PET Marek Moszyński, Tomasz Szczęśniak, Soltan Institute for Nuclear Studies, Otwock-Świerk, Poland.
RADIOGRAPHY & IT’S MODALITIES SPRING INFORMATION WORKSHOP 2011.
C. Joram - HPD-PET team - Bari (Italy), 17 January 2007 The 3D Axial PET Concept Christian Joram, CERN, PH-Department Positron Emission Tomography - Principle.
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
Nuclear Medicine: Tomographic Imaging – SPECT, SPECT-CT and PET-CT Katrina Cockburn Nuclear Medicine Physicist.
16. January 2007Status Report On Compton Imaging Projects 1 Status Of Compton Imaging Projects Carried Out In The CIMA Collaboration HPD Brain PET Meeting.
Seoul National University Functional & Molecular Imaging System Lab Progress in Nuclear Imaging Mikiko Ito, PhD Dept. of Nuclear Medicine, Seoul National.
Nuclear Medicine Principles & Technology_I
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
Medical applications of particle physics General characteristics of detectors (5 th Chapter) ASLI YILDIRIM.
Scintillators suitable for PET applications must be characterized by a high efficiency for gamma-ray detection, determined by a high density and atomic.
1 Nuclear Medicine SPECT and PET. 2 a good book! SR Cherry, JA Sorenson, ME Phelps Physics in Nuclear Medicine Saunders, 2012.
Peter Dendooven LaBr 3 and LYSO monolithic crystals coupled to photosensor arrays for TOF-PET Physics for Health in Europe Workshop February 2-4, 2010,
F. Garibaldi 1,, F. Cusanno 1), S. Majewski 3), N. Clinthorne, P. Musico 4),…………………………. TOPEM: a PET TOF probe, compatible with MRI and MRS for diagnosis.
Nuclear Medicine Physics and Equipment 243 RAD 1 Dr. Abdo Mansour Assistant Professor of radiology
Nuclear Medicine Instrumentation 242 NMT 1 Dr. Abdo Mansour Assistant Professor of radiology
DIGITAL RADIOGRAPHY.
Direct Digital Radiography or Direct Capture Radiography
a Very Interesting Presentation
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
WP 22 – SciFi Development and Characterisation of Inorganic Scintillating Fibers Made of LuAG:Ce and LYSO:Ce S. Diehl 1, R. Novotny 1, Aubry Nicolas 2.
PET Imaging Positron Emission Tomography
ERASMUS+ PROGRAM Phosphor-based X-ray detectors: Basic principles in medical imaging Panagiotis Liaparinos Dpt: Biomedical Engineering, TEI of Athens,
Simulations in Medical Physics Y. TOUFIQUE*, R.CHERKAOUI EL MOURSLI*, M.KACI**, G.AMOROS**, *Université Mohammed V –Agdal, Faculté des Sciences de Rabat,
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
+ Voxel Imaging Pizza Gianluca De Lorenzo. + Positron Emission Tomography April Gianluca De Lorenzo.
MSc medical imaging, Division of Medical Physics, University of Leeds
Development of a High Precision Axial 3-D PET for Brain Imaging
Inorganic Scintillators in Medical-imaging Detectors C. W. E
Application of Nuclear Physics
Overview of CR and DR Gyeongsang National University Hospital
כיצד נרכשת התמונה בסרט הרנטגני?
LSO/LYSO Crystals for Future High Energy Physics Experiments
Function and Structure in
First demonstration of portable Compton camera to visualize 223-Ra concentration for radionuclide therapy Kazuya Fujieda (Waseda University) J. Kataoka,
Past / Future in Scintillation
Presentation transcript:

TU Delft IRI-ST Inorganic Scintillators in Medical-imaging Detectors C.W.E. van Eijk A msterdam, 9 September 2002

TU Delft IRI-ST Radiation in Medical Imaging Energies X-ray imaging Mammography 25 kVp, ~18 keV Radiography, chest 150 kVp Fluoroscopy 150 kVp X-ray CT 150 kVp Nuclear medicine Scintigraphy keV SPECT keV PET 511 keV Efficiency Inorganic scintillator Modality emission transmission

TU Delft IRI-ST From: Philips Medical Systems BV300 series Mobile C-arm system for full surgical and minimally-invasive procedures Interventional Radiology Fluoroscopy - Real time - Low dose ImageIntensifier

TU Delft IRI-ST Transjugular Intrahepatic Portosystemic Shunt (TIPS) Interventional Radiology minimally-invasive procedure

TU Delft IRI-ST Flat panel detector - Amorphous silicon also for radiography Columnar CsI:Tl ADC readout addressing Interventional Radiology From: Philips, Aachen Flat X-ray Detectors for Medical Imaging Dr. Michael Overdick Session 5 2k x 2k 40 x 40 cm 2

TU Delft IRI-ST signal depends on: –scintillator light yield –optical coupling –spectral matching –diode efficiency Photodiode From: Philips, Aachen Flat panel detector - Amorphous silicon Interventional Radiology

TU Delft IRI-ST pillar growth induced by evaporation technique –crack structure –focussing of light –>500 µm layers –high MTF CsI:Tl From: Philips, Aachen Interventional Radiology

TU Delft IRI-ST X-ray Computed Tomography X-ray source (rotating) + 1-D or 2-D position-sensitive detector (rotating) X-ray fan beam (rotating) + Ceramic scintillators + photodiodes ~ 1 k x 1 mm ~ 16 x 1 mm E. Hell et al, NIM A 454 (2000) 40-48

TU Delft IRI-ST 1974: 80 x 80 pixels slices of 13 mm spacing 2000: 1024 x 1024 pixels spiral scanning From: W.A. Kalender, CT, 2000, MCD Verlag X-ray Computed Tomography

TU Delft IRI-ST density ρZ 4 light yield dec. time afterglow wavel. max. (g/cm 3 ) (10 6 ) (phot./MeV) (μs) (% after (nm) 3/100 ms) CdWO ,000 5 < 0.1/ Bi 4 Ge 3 O 12 (BGO) , CsI:Tl , > 6 >2/ Gd 2 O 2 S:Pr,Ce,F ,000 4 < 0.1/< Gd 2 O 2 S:Pr (UFC) , / Y 1.34 Gd 0.60 O 3 :(Eu,Pr) , /< (Hilight) Gd 3 Ga 5 O 12 :Cr,Ce , < 0.1/ Lu 2 O 3 :Eu,Tb ,000 > 1000 > 1/ X-ray Computed Tomography Ceramic Scintillators

TU Delft IRI-ST From: W.A. Kalendber, CT, 2000, MCD Verlag Afterglow in scintillators 1 angle per < ms X-ray Computed Tomography

TU Delft IRI-ST Positron Emission Tomography Detector ring (inner diam. ~ 0.8 m) Collinearly emitted 511 keV quanta detected in coincidence Radiopharmaceutical β + emitter Detectors BGO + PMT Bi 4 Ge 3 O 1 2

TU Delft IRI-ST PET systems Siemens-CTI Positron Emission Tomography

TU Delft IRI-ST PET Detector Block A B C D 4 PMTs BGO detector block 8 x 8 columns 30 mm of 6 x 6 x 30 mm 3 Bi 4 Ge 3 O 1 2 Efficiency

TU Delft IRI-ST Positron Emission Tomography: 2D & 3D

TU Delft IRI-ST From: G. Muehllehner et al. & SCINT 2001 Increase Random coincidences ~ N 2 singles τ 3D PET Energy resolution Time resolution Positron Emission Tomography Light yield Decay time Non-proportionality

TU Delft IRI-ST Bi 4 Ge 3 O 12 (BGO) / 44 9, Lu 2 SiO 5 :Ce (LSO) / 34 26, Gd 2 SiO 5 :Ce (GSO) / 26 8, Lu x Y 1-x AlO 3 : Ce (LuAP) / 32 11, Lu 2 Si 2 O 7 :Ce (LPS) / 29 20,  1 /μ 511 keV light yield  (g/cm 3 ) (mm) /PE (%) (photons/MeV) (ns) (nm) Positron Emission Tomography PET Scintillators Energy resolution poor

TU Delft IRI-ST ΔE/E = 3.1 % photomultiplier readout Hamamatsu R1791 LaCl 3 :Ce(10%) Scintillators Energy Resolution LaCl 3 :Ce counts energy [keV] LaCl 3 :Ce E (keV) COUNTS E.V.D. van Loef et al Appl. Phys. Lett. 77 (2000) 1467

TU Delft IRI-ST PET basics: Position resolution Efficient High position resolution parallax error or radial elongation Off centre: incorrect Line of Response Remedy: Depth of Interaction measurement DOI

TU Delft IRI-ST PET: Depth of Interaction in HRRT PMTs LSO scintillators Light guides PMTs 7.5 x 2.1 x 2.1 mm 3 From: D.W. Townsend, C. Morel presented at SCINT 2001 K. Wienhard et al 2000 IEEE NSS/MIC CDROM Lu 2 SiO 5 :Ce Different decay times in the two layers  Different pulse shape  DOI

TU Delft IRI-ST Depth of Interaction LuAP APD array Pulse shape discrimination Saoudi et al IEEE Trans Nucl Sci 46(1999)462, also 479 Seidel et al IEEE Trans Nucl Sci 46(1999)485 LSO PET: DOI Crystal Clear

TU Delft IRI-ST From: Klaus Wienhard MPI für Neurologische Forschung, Köln Blood flow changes under speech activation (red) Tumor (green) Multi modality PET + MRI Positron Emission Tomography

TU Delft IRI-ST Inorganic Scintillators in Medical-imaging Detectors Conclusion Interest in further improvement of inorganic scintillators Fundamental research Especially for PET also Mammography PET Small Animal PET Use of new light detectors APDs Silicon drift detectors C.W.E. van Eijk Inorganic scintillators in medical imaging Phys.Med.Biol. 47 (2002) R85 - R106