Artificial Intelligence CS482, CS682, MW 1 – 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis,

Slides:



Advertisements
Similar presentations
Constraint Satisfaction Problems
Advertisements

Constraint Satisfaction Problems Russell and Norvig: Chapter
This lecture: CSP Introduction and Backtracking Search
Lecture 11 Last Time: Local Search, Constraint Satisfaction Problems Today: More on CSPs.
1 Constraint Satisfaction Problems A Quick Overview (based on AIMA book slides)
This lecture topic (two lectures) Chapter 6.1 – 6.4, except 6.3.3
ICS-271:Notes 5: 1 Lecture 5: Constraint Satisfaction Problems ICS 271 Fall 2008.
Artificial Intelligence Constraint satisfaction problems Fall 2008 professor: Luigi Ceccaroni.
Constraint Satisfaction problems (CSP)
Lecture 5: Constraint Satisfaction
Constraint Satisfaction Problems. Constraint satisfaction problems (CSPs) Standard search problem: – State is a “black box” – any data structure that.
Constraint Satisfaction Problems
4 Feb 2004CS Constraint Satisfaction1 Constraint Satisfaction Problems Chapter 5 Section 1 – 3.
Constraint Satisfaction Problems
Constraint Satisfaction
University College Cork (Ireland) Department of Civil and Environmental Engineering Course: Engineering Artificial Intelligence Dr. Radu Marinescu Lecture.
CAP 492 Course Dr. Souham Meshoul 1 CONSTRAINT SATISFACTION PROBLEMS Chapter 5.
Constraint Satisfaction Problem Solving Chapter 5.
Chapter 5 Outline Formal definition of CSP CSP Examples
Constraint Satisfaction Problems
Constraint Satisfaction Problems
ISC 4322/6300 – GAM 4322 Artificial Intelligence Lecture 4 Constraint Satisfaction Problems Instructor: Alireza Tavakkoli September 17, 2009 University.
1 Constraint Satisfaction Problems Slides by Prof WELLING.
Artificial Intelligence CS482, CS682, MW 1 – 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis,
CSPs Tamara Berg CS 560 Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart Russell, Andrew Moore,
CSPs Tamara Berg CS Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart Russell, Andrew.
Constraint Satisfaction Problems Chapter 6. Review Agent, Environment, State Agent as search problem Uninformed search strategies Informed (heuristic.
Constraint Satisfaction Read Chapter 5. Model Finite set of variables: X1,…Xn Variable Xi has values in domain Di. Constraints C1…Cm. A constraint specifies.
Chapter 5 Section 1 – 3 1.  Constraint Satisfaction Problems (CSP)  Backtracking search for CSPs  Local search for CSPs 2.
Constraint Satisfaction CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
CSC 8520 Spring Paula Matuszek Based on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are based on Russell, aima.eecs.berkeley.edu/slides-pdf.
Hande ÇAKIN IES 503 TERM PROJECT CONSTRAINT SATISFACTION PROBLEMS.
Chapter 5: Constraint Satisfaction ICS 171 Fall 2006.
CSCI 5582 Fall 2006 CSCI 5582 Artificial Intelligence Fall 2006 Jim Martin.
CSC 423 ARTIFICIAL INTELLIGENCE Constraint Satisfaction Problems.
1 Chapter 5 Constraint Satisfaction Problems. 2 Outlines  Constraint Satisfaction Problems  Backtracking Search for CSPs  Local Search for CSP  The.
CSC 8520 Spring Paula Matuszek CS 8520: Artificial Intelligence Search 3: Constraint Satisfaction Problems Paula Matuszek Spring, 2013.
CSPs Tamara Berg CS Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart Russell, Andrew.
Chapter 5 Constraint Satisfaction Problems
An Introduction to Artificial Intelligence Lecture 5: Constraint Satisfaction Problems Ramin Halavati In which we see how treating.
1 Constraint Satisfaction Problems Chapter 5 Section 1 – 3 Grand Challenge:
CHAPTER 5 SECTION 1 – 3 4 Feb 2004 CS Constraint Satisfaction 1 Constraint Satisfaction Problems.
Constraint Satisfaction Problems University of Berkeley, USA
4/18/2005EE5621 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 5, 4/18/2005 University of Washington, Department of Electrical Engineering Spring.
1. 2 Outline of Ch 4 Best-first search Greedy best-first search A * search Heuristics Functions Local search algorithms Hill-climbing search Simulated.
Computing & Information Sciences Kansas State University Friday, 08 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 7 of 42 Friday, 08 September.
Chapter 5 Team Teaching AI (created by Dewi Liliana) PTIIK Constraint Satisfaction Problems.
EXAMPLE: MAP COLORING. Example: Map coloring Variables — WA, NT, Q, NSW, V, SA, T Domains — D i ={red,green,blue} Constraints — adjacent regions must.
Dr. Shazzad Hosain Department of EECS North South University Lecture 01 – Part C Constraint Satisfaction Problems.
1 Constraint Satisfaction Problems (CSP). Announcements Second Test Wednesday, April 27.
Constraint Satisfaction Problems
CS 561, Session 8 1 This time: constraint satisfaction - Constraint Satisfaction Problems (CSP) - Backtracking search for CSPs - Local search for CSPs.
CSPs: Search and Arc Consistency Computer Science cpsc322, Lecture 12
CSPs: Search and Arc Consistency Computer Science cpsc322, Lecture 12
Constraint Satisfaction Problems Lecture # 14, 15 & 16
Advanced Artificial Intelligence
CS 188: Artificial Intelligence
CSPs: Search and Arc Consistency Computer Science cpsc322, Lecture 12
Constraint Satisfaction Problems
Constraint Satisfaction Problems
Artificial Intelligence
Constraint Satisfaction Problems
CSP Warm-up Assign Red, Green, or Blue
Constraint satisfaction problems
Constraint Satisfaction Problems. A Quick Overview
CS 8520: Artificial Intelligence
Constraint Satisfaction Problems
Constraint satisfaction problems
Constraint Satisfaction Problems (CSP)
Presentation transcript:

Artificial Intelligence CS482, CS682, MW 1 – 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis,

Constraint satisfaction problems Constraints on the values of variables that define system state What’s new State is no longer a black box Previously all you could do with states was Test if two states were the same Tell if a state was a goal state Now: State space is defined by the values of a set of variables Each variable’s set of values is the variable’s domain There can be Unary Binary Path Constraints

CSP Find values of variables that satisfy all problem constraints How? Search, of course Can we use any search method? Hmm, some intuition from considering specific problems will help

Three colour problem Neighboring regions cannot have the same color Colors = {red, blue, green}

Consider using a local search WANTNSWQueenVictoriaSATas {r, g, b} - 3 to the power 7 possible states = But not all states are legal -For example: {r, r, r, r, r, r, r} is NOT legal because it violates our constraint -Suppose we do sequential assignment of values to variables -Assign r (say) to WA then we can immediately reduce the number of possible values for NT and SA to be {g, b}, and if we chose NT = {g}, then SA has to be {b}.

Propagation of constraints r g b ?, ?, ? r g b

Types Discrete finite domains Map coloring, scheduling with time limits Can enumerate all legal value combinations (that specify constraints) Discrete infinite domains Ex: Variable values can be the set of integers Needs a constraint language to specify constraints We have solutions for linear constraints over integers We can prove that no algorithm exists for solving general nonlinear constraints over integers Continuous domains Hubble telescope scheduling is continuous over time and must obey a variety of astronomical, precedence, and power constraints Linear programming  poly time algorithms

Types Unary constraints Truck height < 14 feet Binary constraints WA != SA

Cryptarithmetic puzzles

Wouldn’t it be nice to have a constraint propagation algorithm?

Properties Node consistency (unary) Arc consistency (binary) Network arc consistency (all arcs are consistent) ACS3 is the most popular arc consistency algorithm Fails quickly if no consistent set of values found Start: Considers all pairs of arcs If making an arc (xi, xj) consistent causes domain reduction Add all neighboring arcs that go to xi to set of arcs to be considered Success leaves a much smaller search space for search Domains will have been reduced Suppose n variables, max domain size is d, then complexity is O(cd^3) where c is number of binary constraints

More constraint types and approaches Path (triples) Global constraints (n variables) Special purpose algorithms (heuristics) Alldiff constraints (Sudoku) Remove any variable with singleton domain Remove that value from the domains of all other variables Repeat While singletons values remain No domains are empty Not more variables than domain values Resource constraints (Ex: Atmost 100) Bounds and bounds propagation

Search Constraints have been met and propagated But the problem still remains to be solved (multiple values in domains) Search through remaining assignments For CSPs Backtracking search is good Choose a value for variable, x Choose a subsequent legal value for next variable, y Backtrack to x if no legal value found for y

Australia coloring

Backtracking search algorithm

Local search for CSPs

SudoKu