IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.

Slides:



Advertisements
Similar presentations
UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL.
Advertisements

ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
A two-zone model for the production of prompt neutrinos in gamma-ray bursts Matías M. Reynoso IFIMAR-CONICET, Mar del Plata, Argentina GRACO 2, Buenos.
High-energy photon and particle emission from GRBs/SNe Xiang-Yu Wang Nanjing University, China Co-authors: Zhuo Li (Weizmann), Soebur Razzaque (PennState),
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID.
Testing the origin of the UHECRs with neutrinos Walter Winter DESY, Zeuthen, Germany Kavli Institute for Theoretical Physics (KITP), Santa Barbara, CA,
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Re’em Sari Tsvi Piran GRBs in the Era of Rapid Follow-up.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
NISSIM ILLICH FRAIJA This work (with collaborators Sahu et al) was accepted in PRD (arXiv: )
Very High Energy Transient Extragalactic Sources: GRBs David A. Williams Santa Cruz Institute for Particle Physics University of California, Santa Cruz.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
Detecting Neutrino Transients with IceCube & optical Follow-up Observations Marek Kowalski Penn State, October 2007.
X-ray/Optical flares in Gamma-Ray Bursts Daming Wei ( Purple Mountain Observatory, China)
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
Multi-Messenger Astronomy with GLAST and IceCube Kyler Kuehn, UC-Irvine UCLA GLAST Workshop May 22, 2007.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
Modeling GRB B Xuefeng Wu (X. F. Wu, 吴雪峰 ) Penn State University Purple Mountain Observatory 2008 Nanjing GRB Workshop, Nanjing, China, June
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm TeVPA 2012 TIFR Mumbai, India Dec 10-14, 2012 Walter Winter Universität Würzburg.
10 18 eV Neutrinos associated with UHECR (>10 19 eV) sources Zhuo Li ( 黎卓 ) Peking University, Beijing Collaborators: Eli Waxman & Liming Song Li & Waxman,
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
8 th Jan, NuHoRIzons, HRI, Allahabad Atsushi Watanabe (Harish-Chandra Research Institute) In collaboration with Raj Gandhi (HRI) Abhijit Samanta.
C Alexander Kappes for the IceCube Collaboration 23 rd European Cosmic-Ray Symposium Moscow, 7. July 2012 Neutrino astronomy with the IceCube Observatory.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm GGI seminar Florence, Italy July 2, 2012 Walter Winter Universität Würzburg TexPoint.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
Modeling the Early Afterglow Modeling the Early Afterglow Swift and GRBs Venice, Italy, June 5-9, 2006 Chuck Dermer US Naval Research Laboratory Armen.
Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? ACP seminar, IPMU Kashiwa, Japan Oct. 30, 2013 Walter Winter Universität Würzburg.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
High Energy Neutrino Background from Gamma-Ray Bursts Kohta Murase (YITP, Kyoto Univ.) Collaborators Shigehiro Nagataki (YITP, Kyoto Univ.) Kunihito Ioka.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
Models of GRB GeV-TeV emission and GLAST/Swift synergy Xiang-Yu Wang Nanjing University, China Co-authors: Peter Meszaros (PennState), Zhuo Li (PKU), Hao-ning.
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
High-energy radiation from gamma-ray bursts Zigao Dai Nanjing University Xiamen, August 2011.
Alexander Kappes Extra-Galactic sources workshop Jan. 2009, Heidelberg Gamma ray burst detection with IceCube.
Dermer Deciphering the Ancient Universe with GRBs, Kyoto, Japan 22 April Recent Progress in Theoretical Understanding of GRBs from Fermi LAT and.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Alexander Kappes (E. Strahler, P. Roth) ECAP, Universität Erlangen-Nürnberg for the IceCube Collaboration 2009 Int. Cosmic Ray Conf., Łódź,
EMISSION OF HIGH ENERGY PHOTONS FROM GRB
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
A search for neutrinos from long-duration GRBs with the ANTARES underwater neutrino telescope arxiv C.W. James for the ANTARES collaboration.
Search for Neutrinos from GRBs with AMANDA and IceCube Alexander Kappes University Wisconsin-Madison For the IceCube Collaboration 6 th International Workshop.
Multi-messenger signals from Gamma-Ray Bursts and related phenomena Bing Zhang University of Nevada Las Vegas May 15, 2013, F.O.E. Fifty One Ergs, Raleigh,
The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.
Neutrinos and the origin of the cosmic rays TexPoint fonts used in EMF: AAA Walter Winter DESY, Zeuthen, Germany ICRC 2015 The Hague, Netherlands July.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Determining the neutrino flavor ratio at the astrophysical source
GLAST Workshop April 13, 2007 Argonne National Lab
Erik Strahler UW-Madison 28/4/2009
Brennan Hughey for the IceCube Collaboration
Neutrinos from Gamma-Ray Bursts
Neutrinos as probes of ultra-high energy astrophysical phenomena
Particle Acceleration in the Universe
Cosmic rays, γ and ν in star-forming galaxies
Brennan Hughey for the IceCube Collaboration
Neutrino astrophysics
Shigeru Yoshida and Aya Ishihara
Presentation transcript:

IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y. Liu, S. Nagataki, K. Murase, Z.G. Dai Liverpool GRB meeting June 20, 2012

High-energy neutrino- a new window MeV neutrinos: detected Solar & SN1987A neutrinos Stellar physics (Sun’s core, SNe core collapse) High-energy (>TeV) neutrinos  Study “Cosmic accelerators” 1) 2)

High-energy neutrino production in GRBs Necessary conditions: 1. Proton acceleration 2. Large proton energy fraction 3. Enough thick target 1) 2)

GRB Neutrinos He/CO star H envelope Buried shocks No  -ray emission Razzaque, Meszaros & Waxman ‘03 Precursor ’s Internal shocks Prompt  -ray (GRB) Waxman & Bahcall ’97 Murase & Nagataki 07 Burst ’s External shocks Afterglow X,UV,O Waxman & Bahcall ‘00 Afterglow ’s  p PeV EeVTeV

High-energy neutrino production in GRBs Necessary conditions:  Proton acceleration  Proton energy fraction  Enough thick target 1) 2)

Electron acceleration in GRBs An established fact: afterglow synchrotron emission; prompt non-thermal emission extending to GeV X-ray afterglow of GRB970508Prompt spectrum of GRB090926A

Proton acceleration in GRBs: Waxman (1995): Internal shock acceleration Vietri (1995): External shock acceleration acceleration time = available timeAvailable time acceleration time = cooling time

GRB as a source of UHECRs R_L E/Zqv R_L UHECRs Hillas Plot

Debating point: GRBs can provide enough CR flux? [Waxman 95; Bahcall & Waxman 03] require Galactic sources up to ~ eV 1/E 2 source spectrum Uncertainties: 1 ) Local GRB rate R_0 2 ) E CR /E UHECR 3 ) E CR /E γ (E γ =E e ) GRB: E_γ=1E52.5 erg , R_0=1/Gpc^3/yr UHECR flux GRB flux

Neutrino production in GRBs Necessary conditions:  Proton acceleration  Proton energy fraction: 1. Proton-electron composition :E p /E e = ~10 2. Poynting-flux dominated : very low  Enough thick target  Dense photon field:  Dense medium: E p /E e = E CR /E γ =?

Standard fireball internal shock scenario Waxman & Bahcall 97, 99 Shock radius: and Baryon composition ~1 neutrino/100 GRB ! Normalized with UHECR flux:

Neutrino spectrum assuming Band function From break in photon spectrum From cooling of pions

Neutrino spectrum He/CO star H envelope Buried shocks No  -ray emission Razzaque, Meszaros & Waxman, PRD ‘03 Precursor ’s Internal shocks Prompt  -ray (GRB) Waxman & Bahcall ’97 Murase & Nagataki 07 Burst ’s External shocks Afterglow X,UV,O Waxman & Bahcall ‘00 Afterglow ’s  CR PeV EeV TeV

IceCube--neutrino detector

IceCube non-detection: fireball model in trouble?

IC40+59 results Stacking analysis on 215 GRBs between April 2008 and May 2010 “Model-dependent” limit for prompt emission model. “Model-independent” limit for general neutrino coincidences (no spectrum assumed) with sliding time window ±Δt from burst. One event 30s after GRB A (“Event 1”) most likely background IceCube: Stacked point-source flux below “benchmark” prediction by a factor 3-4.

However, inaccurate calculation by IceCube of the expected flux 1) Normalization (Li 12, Hummer et al. 12, He et al. 12) 2) Approximate the energy of all the photons using the break energy of the photon spectrum IceCube: Correct:

Neutrino flux– recalculation (He et al. 12) ---accounting for the neutrino oscillation and the cooling of the secondary particles ---ratio between the charged pion number and the total pion number ---four final lepton states share the pion energy ---fraction of the proton energy lost into pions 1/4

Comparison – for one burst Analytic: Delta resonance Numerical calculation: consider the full cross section, direct pion, multi- pion production channels Our calculated flux (numerical result) is one order of magnitude lower than IceCube collaboration

Our result for IC40+59 flux For the same 215 GRBs Using the same benchmark parameters as IceCube team Our results: stacked neutrino flux from 215 GRBs is still a factor of ~3 below the IceCube sensitvity Benchmark parameters: t_v= 0.01 s Γ = 10^2.5, Baryon ratio E p /E γ = 10

General dissipation scenario-constrain the radius R >4 ×10^12 cm

Non-benchmark model parameters Neutrino flux very sensitive to Г Using more realistic Г Liang et al Ghirlanda et al. (2012)

Non-benchmark parameters z=2.15z=1 E p /E γ = 10

Constraints on the baryon ratioE p /E γ

One particular scenario GRB as the source of UHE CR neutrons? (Rachen & Mészáros’98) Neutron can escape independent of normalize to UHE CRs (Ahlers et al. 2011) -> a high neutrino flux -> ruled out !

Diffuse GRB neutrinos Many untriggered GRBs may also produce neutrinos IC40 limit: F<

the injection rate of the neutrinos per unit of time per comoving volume baryon ratio <10 for some LFs LF-L: Liang et al LF-W: Wanderman & Piran (2010) LF-G: Guetta & Piran 2007

Conclusions IceCube current limit (40+59) has not challenged the standard baryon fireball shock model, marginally for low Г models Full IceCube 3 yr observations may constrain the standard baryon fireball shock model GRB-UHECR connection not rule out

Understanding it in another way All-sky total flux in Fermi GBM Expected neutrino flux