PULSAR WIND NEBULAE FROM RADIO TO X-RAYS Andrew Melatos (U. Melbourne) 1.Basic PWN physics: shock confinement, wave-like pulsar wind (unique) 2.Radio-to-X-ray.

Slides:



Advertisements
Similar presentations
Simulated synchrotron emission from Pulsar Wind Nebulae Delia Volpi Dipartimento di Astronomia e Scienza dello Spazio-Università degli Studi di Firenze-Italia.
Advertisements

Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
粒子シミュレーションで観る粒子加速 : 衝撃波、リコネクション、降着円盤 星野 真弘. Nonthermal Universe Cosmic Rays ACRs [Stone et al., 2008] Where and How are non-thermal particles produced?
Stephen C.-Y. Ng HKU. Outline What are pulsar wind nebulae? Physical properties and evolution Why study PWNe? Common TeV sources, particle accelerators.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae S.P. Reynolds et al. Martin, Tseng Chao Hsiung 2013/12/18.
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
Recent developments in the theory of Pulsar Wind Nebulae (Plerions) Yves Gallant LPTA, Université Montpellier II (relativistic) magneto-hydrodynamics of.
Pulsar Wind Nebulae with LOFAR Jason Hessels (ASTRON/UvA) Astrophysics with E-LOFAR - Hamburg - Sept. 16 th -19 th, 2008.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Magnetic dissipation in Poynting dominated outflows Yuri Lyubarsky Ben-Gurion University.
A New Aspect of the Crab Pulsar Nebula; Particle Acceleration and Heating Shibata, S., Tomatsuri, H., Shimanuki, M., Saito, K. Nakamura, Y., (Yamagata.
Pulsars Basic Properties. Supernova Explosion => Neutron Stars part of angular momentum carried away by shell field lines frozen into solar plasma (surface.
URJA, Banff 13 Jul 2005 Time Variability in the X-ray Nebula and Jet Powered by PSR B Tracey DeLaney (CfA) Bryan Gaensler (CfA) Jon Arons (Berkeley)
The Evolution & Structure of Pulsar Wind Nebulae Gaensler, B. M., & Slane P.O. ARA&A, 2006, 44:17.
Challenges of Relativistic Jets - Cracow (June 2006) Patrick Slane Pulsar Winds and Jets Pat Slane (Harvard-Smithsonian Center for Astrophysics)
PARTICLE ACCELERATION AND RADIATION IN PULSAR WIND NEBULAE
Relativistic Reconnection in Pairs: Mass Transport (Acceleration?) J. Arons UC Berkeley Question: How Does Return Current in PSR Magnetosphere Form? What.
X-ray polarisation: Science
Physics of Relativistic Jets Yuri Lyubarsky Ben-Gurion University Beer-Sheva, Israel.
Synthesis talk : relativistic pulsars winds from inside to far out Maxim Lyutikov (UBC)
Institute of Astronomy, Radio Astronomy and Plasma Physics Group Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology, Zürich.
PULSAR WIND NEBULAE: PROBLEMS AND PROSPECTS Jonathan Arons University of California, Berkeley.
Relativistic reconnection Yuri Lyubarsky Ben-Gurion University, Israel.
Pulsar Wind Nebulae and Relativistic Shocks Elena Amato INAF-Osservatorio Astrofisico di Arcetri Collaborators: Jonathan Arons, Niccolo’ Bucciantini, Luca.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
How to Form Ultrarelativistic Jets Speaker: Jonathan C. McKinney, Stanford Oct 10, 2007 Chandra Symposium 2007.
Nick Camus Niccolo Bucciantini Philip Hughes Maxim Lyutikov Serguei Komissarov (University of Leeds) RMHD simulations of the Crab Nebula.
Astrophysical Jets Robert Laing (ESO). Galactic black-hole binary system Gamma-ray burst Young stellar object Jets are everywhere.
Particle acceleration in Pulsar Wind Nebulae Elena Amato INAF-Osservatorio Astrofisico di Arcetri Collaborators: Jonathan Arons, Niccolo’ Bucciantini,Luca.
January 8, st AAS Meeting1 Nucleosynthesis, Pulsars, Cosmic Rays, and Shock Physics: High Energy Studies of Supernova Remnants with Chandra and.
Magnetic reconnection at the termination shock in a striped pulsar wind Yuri Lyubarsky Ben-Gurion University, Israel In collaboration with: Jerome Petri.
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
Mitch Begelman JILA, University of Colorado
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
Pulsar wind nebulae and their interaction with the environments Fangjun Lu 卢方军 Institute of High Energy Physics Chinese Academy of Sciences.
Hot Electromagnetic Outflows and Prompt GRB Emission Chris Thompson CITA, University of Toronto Venice - June 2006.
22 nd February 2007 Poonam Chandra Unusual Behavior in Radio Supernovae Poonam Chandra Jansky Fellow, National Radio Astronomy Observatory Astronomy Department,
Jets Two classes of jets from X-ray binaries
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
Harvard-Smithsonian Center for Astrophysics Patrick Slane Pulsar Wind Nebulae.
Particle Acceleration by Relativistic Collisionless Shocks in Electron-Positron Plasmas Graduate school of science, Osaka University Kentaro Nagata.
Multiple Sheet Beam Instability of Current Sheets in Striped Relativistic Winds Inertial Parallel E in Neutron Star Magnetospheres: Return Cuurent Sheets.
Multiple Sheet Beam Instability of Current Sheets in Striped Relativistic Winds Jonathan Arons University of California, Berkeley 1.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
03/19/2007N. Bucciantini: Hubble Symposium Relativistic Outflows from Compact Rotators: Pulsar Winds, Pulsar-Wind Nebulae, and GRBs environment.
Relaxation of Pulsar Wind Nebula via Current-Driven Kink Instability
PLASMA WAKEFIELD ACCELERATION Pisin Chen Kavli Institute for Particle Astrophysics and Cosmology Stanford Linear Accelerator Center Stanford University.
COSPAR 2008, Montreal, 18 July Patrick Slane (CfA) Pulsar Wind Nebulae Observations of.
MODELING RELATIVISTIC MAGNETIZED PLASMA Komissarov Serguei University of Leeds UK.
Heidelberg 2008 Patrick Slane (CfA) Pulsar Wind Nebulae.
Gamma-Ray Emission from Pulsars
Boston 2009 Patrick Slane (CfA) SNRs and PWNe in the Chandra Era Observations of Pulsar Bowshock Nebulae Collaborators: B. M. Gaensler T. Temim J. D. Gelfand.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
Extended X-ray object ejected from the PSR B /LS 2883 binary Jeremy Hare (George Washington University) Oleg Kargaltsev (George Washington University)
Damien Parent – Moriond, February PSR J , PSR J , and their cousins -- young & noisy gamma ray pulsars Damien Parent on behalf of.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.
PULSAR WINDS AND NEBULAE Elena Amato INAF-Osservatorio Astrofisico di Arcetri Collaborators: Jonathan Arons, Niccolo’ Bucciantini, Luca Del Zanna, Delia.
Pulsars and PWNs as sources of high-energy particles Jarosław Dyks CAMK, Toruń.
5 vii 2012Frascati1 The Crab Impact Roger Blandford Yajie Yuan KIPAC Stanford.
Tobias Jogler Max-Planck Institut für Physik IMPRS YSW Ringberg 2007 VHE emission from binary systems Outline Binary systems Microquasar Pulsar binaries.
GLAST Observations of Supernova Remnants and Pulsar Wind Nebulae Bryan Gaensler The University of Sydney / Harvard-Smithsonian Center for Astrophysics.
The April 2011 gamma-ray flare: A new astrophysical puzzle R. Buehler for the Fermi-LAT collaboration and A. Tennant, P. Caraveo, E. Costa, D. Horns, C.
Pulsars: the Magnetosphere and the γ-ray emission
Observation of Pulsars and Plerions with MAGIC
A statistical model to explain the gamma-ray flare and variability of Crab nebula Qiang Yuan Institute of High Energy Physics, Chinese Academy of Sciences.
磁場散逸を考慮したパルサー星雲の閉じ込めについて
Magnetohydrodynamics of pulsar winds and plerions
Intense Coherent Emission in Relativistic Shocks
Presentation transcript:

PULSAR WIND NEBULAE FROM RADIO TO X-RAYS Andrew Melatos (U. Melbourne) 1.Basic PWN physics: shock confinement, wave-like pulsar wind (unique) 2.Radio-to-X-ray diagnostics → composition, energy transport, magnetic field geometry

WHAT IS A PWN? “Bubble” of magnetic field and relativistic e ± Inflated by pulsar, confined by environment Synchrotron source: centre-filled, highly pol’d Wind cools adiabatically  invisible as far as termination shock Crab nebula (optical)

ENVIRONMENTAL ZOO Vela SNR Like Crab, but older (Helfand et al. 01) Guitar nebula H  bow shock PSR speeding through ISM (Chatterjee & Cordes 03) “Black Widow” binary H  + X-ray shocks Wind ablates companion (Gaensler et al. 03)

FLARES FROM PSR B Eccentric binary PSR Splashes into Be star’s disk → eclipse Pulsed radio → DM, RM → density, B field Unpulsed radio & X-ray → shock physics (Connors et al. 02) radio eclipse 1.4 GHz transient “mini-PWN”

TERMINATION SHOCK blast wave SN remnant + filaments PSR wind ram pressure P ≈ L/4  r 2 c termination shock backwash confined by SNR P ≈ L×age/(4  r 3 /3)

Reverse shock: contracts as backwash accumulates

WAVE-LIKE WIND Global plasma wave oscillating at   current sheet linear pol’n (“stripes”) circular pol’n (“helix”) J disp  E  r -1 J cond  n  r -2 J disp > J cond for r > 10 5 r LC

“CROSSBOW” MORPHOLOGY Gemini (near-IR) Chandra (X-ray) HST (optical) Torus (wisps) + jet (knots) vary daily (Hester et al. 02)

(Pavlov et al. 03) Vela: X-ray jet = “fire hose” Crab: sprite + rod + 20 min + 2 d Crab: wisps I & II J K′ mHz variability in near IR: Hokupa’a adaptive optics – beware PSF & background (Melatos et al. 04)

RADIO ELECTRONS Radio, X-ray wisps coincide Move in concert ( ≈ 0.24c ) Uniform radio spectrum → radio and X-ray e ± accelerated together! Near-IR spectrum varies: sprite -0.2 ≠ wisps -0.7±0.1 (Bietenholz et al. 01) VLA,  5 GHz

MULTI- DIAGNOSTICS Wisp structure → wind composition Ion cyclotron acceleration →  and  -rays Confinement geometry → energy transport Energy flux versus latitude Electromagnetic or kinetic? Polarization → magnetic field geometry Collimation and stability

I. WISPS = ION SHOCK? Ion current = Goldreich-Julian ( dN i /dt ≈ s -1 ) Neutrinos! p p →  →  (in known ratio L  : L ) Ions gyrate  B field compressed  ion bunches  variability (Spitkovsky & Arons 02; cf. Komissarov & Lyubarsky 03) Internal structure of shock resolved – unique!

II. CONFINEMENT GEOMETRY Example: The Mouse (Gaensler et al. 03) Radio + X-ray synchrotron tails Mach number from stand-off distance termination shock radio backflow from fore shock X-ray backflow from aft shock bow shock + CD

ENERGY FLUX VS LATITUDE Shape: ram pressure Brightness: Doppler Anisotropic wind or ISM density gradient (Chatterjee & Cordes 04) Monopole flux  sin 2  (Komissarov & Lyubarsky 03) (Gaensler et al. 02)

EM → KE CONVERSION Shock:  ≈ so MHD flow can decelerate from shock ( c/3 ) to edge of PWN ( 1500 km s -1 ) Pulsar:  ≈ 10 6 ( e ± cascades) Force-free linear accelerator (Contopoulos et al. 02) Reconnection in striped wind (Lyubarsky & Kirk 01) Wave conversion via instability (Melatos 98)  = EM flux : KE flux

Striped wind: V phase = V wind Reconnection and heating (Lyubarksy & Kirk 01) Electromagnetic wave: large amplitude (  p ) Unstable (Melatos & Melrose 96) Puzzles… How launched? Synchro-Compton rad’n? Energy transport? VV E E B B neutral sheet alternating B

III. POLARIZATION = B FIELD Collimation: postshock hoop stress (  E+J×B ≈ 0 before the shock) & anisotropic energy flux Disruption of B   MHD kink instability (Begelman 98) BUT pol’n regular – regenerated by  dynamo? MHD simulations (van der Swaluw 03) 3C58 in X-rays (Murray et al. 02)

SUMMARY Radio-to-X-ray PWN: SN remnant, ISM, eclipsing binary Shock = “crossbow” which varies daily PSR wind = two-zone large-amplitude wave Radio & X-ray wisps → ions →  ISM bow shock → anisotropic energy flux SNR → calorimeter → EM : KE Radio & X-ray pol’n → B field & collimation