Ground Layer AO at ESO’s VLT Claire Max Interim Director UC Observatories September 14, 2014.

Slides:



Advertisements
Similar presentations
Geminis Future AO Program A Decade of AO Evolution at Gemini Recent AO Program Highlights Doug Simons Gemini Observatory.
Advertisements

AOF Wave front sensor modules GALACSI and GRAAL by Stefan Ströbele in behalf of the GALACSI and GRAAL Team members: R.Arsenault, R.Conzelmann, B.Delabre,
ESO, 27 Nov 09 SPHERE – the high contrast challenge Markus Kasper, ESO 1 1.
Subaru AO in future. Outline Overview of AO systems at Mauna Kea and in the world. Ongoing plan of AOS at Subaru and Mauna Kea. What’s in future.
European Southern Observatory European Southern Observatory © ESO 2005 Page 1 AO Department Leiden, April 26th 2005 MUSE M ulti U nit S pectroscopic E.
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
RASC, Victoria, 1/08/06 The Future of Adaptive Optics Instrumentation David Andersen HIA.
Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
Ralf Siebenmorgen IR instrument from Antarctica (thermal) IR instruments from Antarctica: what can be gained Ralf Siebenmorgen  Why? pwv, T, aerosols.
LBT AO Progress Meeting, Arcetri Walter Seifert (ZAH, LSW) The LBT AO System and LUCIFER 1.Requirements for the commissioning of LUCIFER:
Page 1 Lecture 17 The applications of tomography: LTAO, MCAO, MOAO, GLAO Claire Max AY 289 UC Santa Cruz March 7, 2013.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Laser guide star adaptive optics at the Keck Observatory Adam R. Contos, Peter L. Wizinowich, Scott K. Hartman, David Le Mignant, Christopher R. Neyman,
PILOT: Pathfinder for an International Large Optical Telescope -performance specifications JACARA Science Meeting PILOT Friday March 26 Anglo Australian.
GMT Phasing GLAO – not needed LTAO – Phase stabilization done at ~1kHz with edge sensing at M1 and M2 – Phase reference set at ~.01Hz using off-axis star.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
NGAO 1-tier Draft Optical Relay Design P. Wizinowich 12/7/07.
Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January
WMKO Next Generation Adaptive Optics: Build to Cost Concept Review Peter Wizinowich et al. ~ March 20, 2009 February 5, 2009 DRAFT.
Widening the Scope of Adaptive Optics Matthew Britton.
The Path to NGAO Core Science Requirements Claire Max and Liz McGrath NGAO Team Meeting September 11-12, 2008.
A Short Presentation of Ongoing AO Work at Lund Observatory Mette Owner-Petersen Lund Observatory Workshop for “Forskarskolen i Rymdteknik” Gothenburg.
Robo-AO Replicable Robotic Laser Adaptive Optics and Science System for 1-3 m Telescopes Christoph Baranec Caltech Optical Observatories Laboratory development.
PSWG March Adaptive Optics Systems Engineering on GMT Peter McGregor.
The Future of AO at Keck Sept 2004 Mike Brown, for the AOWG and Keck AO team.
NGAO Build to Cost Summary Peter Wizinowich, Sean Adkins, Rich Dekany, Don Gavel, Claire Max & the NGAO Team SSC Meeting April 14, 2009.
High Redshift Galaxies: Encircled energy performance budget and IFU spectroscopy Claire Max Sept 14, 2006 NGAO Team Meeting.
Adaptive Optics in the VLT and ELT era
Next generation wide field AO (GLAO) and NIRMOS for Subaru Telescope.
J. Large Binocular Telescope (LBT) Operational Readiness
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
Center for Astronomical Adaptive Optics Ground layer wavefront reconstruction using dynamically refocused Rayleigh laser beacons C. Baranec, M. Lloyd-Hart,
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
Adaptive Optics in the VLT and ELT era Beyond Basic AO
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
GLAO simulations at ESO European Southern Observatory
AO4ELT - Paris Giant Magellan Telescope Project Science Drivers & AO Requirements Patrick McCarthy - GMT Director Phil Hinz & Michael Hart - GMT.
Telescopes & recent observational techniques ASTR 3010 Lecture 4 Chapters 3 & 6.
Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
Viewing the Universe through distorted lenses: Adaptive optics in astronomy Steven Beckwith Space Telescope Science Institute & JHU.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
The VLT Adaptive Optics Facility
Future Plan of Subaru Adaptive Optics
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Strehl Ratio estimation. SR from H band images High Strehl PSF ->fitting with Zernike modes We suppose: No relevant loss of energy due to high modes (Z>36)
Conference “Feeding the Giants: ELTs in the era of Surveys” -- Ischia 31/08/2011 Large field of view and ELTs: an impossible marriage? Paolo Ciliegi (INAF.
Status report of AO188+LGS (+future AO) Yutaka Hayano (Subaru Telescope, NAOJ) S. Oya, M. Hattori, Y. Saito, Y. Minowa, M. Ito, H. Terada, T.S. Pyo, H.
1 MCAO at CfAO meeting M. Le Louarn CfAO - UC Santa Cruz Nov
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
Experimental results of tomographic reconstruction on ONERA laboratory WFAO bench A. Costille*, C. Petit*, J.-M. Conan*, T. Fusco*, C. Kulcsár**, H.-F.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Page 1 Adaptive Optics in the VLT and ELT era basics of AO Neptune François Wildi Observatoire de Genève Credit for most slides : Claire Max (UC Santa.
1 Comparative Performance of a 30m Groundbased GSMT and a 6.5m (and 4m) NGST NAS Committee of Astronomy & Astrophysics 9 th April 2001 Matt Mountain Gemini.
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Subaru GLAO Simulation
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
Instrument Control Systems Seminar 2014, 20 th -24 th October 2014 Instrument Control Systems 2014 NGC controller Leander Mehrgan.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
Page 1 Adaptive Optics in the VLT and ELT era François Wildi Observatoire de Genève Credit for most slides : Claire Max (UC Santa Cruz) Basics of AO.
Page 1 Adaptive Optics in the VLT and ELT era Beyond Basic AO François Wildi Observatoire de Genève.
Page 1 Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO Claire Max AY 289 March 3, 2016.
Lecture 14 AO System Optimization
Pyramid sensors for AO and co-phasing
NGAO Trade Study GLAO for non-NGAO instruments
Presentation transcript:

Ground Layer AO at ESO’s VLT Claire Max Interim Director UC Observatories September 14, 2014

Overview One VLT telescope devoted to wide fields and GLAO –Four sodium-layer laser guide stars –One adaptive secondary mirror feeds all AO systems Two science instruments: –MUSE (24 visible-light IFUs) –HAWK-I (wide field near-IR imager) Each one has its own GLAO system –GALACSI AO system feeds MUSE (visible) –GRAAL AO system feeds HAWK-I (near-IR) Things to think about

VLT adaptive secondary: built by MicroGate, cost approx. $14M

MUSE: 24 visible light IFUs (!)

AO modules for these GLAO systems: large, sophisticated, complex GALACSI design GALACSI on elevation bearing

MUSE +GALACSI AO: performance predictions

HAWK-I plus GRAAL AO: GLAO for near-IR wide field imaging HAWK-I imagerGRAAL GLAO system

GRAAL + HAWK-I: Performance predictions, K band Image quality: No AO ~0.5” With AO ~0.4”

GRAAL + HAWK-I: Performance predictions, K band About 6 arc min field

ESO built the ASSIST Test Stand to test AO systems with DM in the lab

Main Points Extremely ambitious ESO VLT wide field program –Both with and without GLAO Re-engineered adaptive secondary mirror (~$14M) Four sodium-layer LGS Large and expensive instruments (MUSE, HAWK-I) designed to take advantage of GLAO –MUSE (visible): 0.2 arc sec/px, HAWK-I (near-IR): 0.1 arc sec/px –Low internal errors (?) Each instrument has its own AO module Predictions: –MUSE with GLAO: Image quality 0.65” -> 0.46” (30% improved) –HAWK-I with GLAO: Image quality 0.50” -> 0.40” (20% improved)

Issues for extragalactic science with VLT GLAO What are/were the science trade-offs? Example: can trade field of view against image quality –Wider field -> larger FWHM Wider field -> may be able to undertake larger surveys and/or use less telescope time for a given survey Larger FWHM -> lower SNR for given exposure time (so larger field may or may not speed up survey); less spatial resolution Trade depends on the science that you want to do I wasn’t able to find this kind of trade study in preparation for the two VLT GLAO systems + instruments

GRAAL- GALACSI Comparison 15 parameterGRAALGALACSI InstrumentHawk-I (IR imager) ESOMuse (VIS 3D-spectrograph) Lyon ModeMaintenance modeGLAOWide Field ModeNarrow Field Mode Field of view10”7.5’1’1’7.5” AO modeSCAOGLAO LTAO Performance (S.R. ~ 80% in K- band) x1.7 EE gainx2 EE gain S.R. >5% (10% Natural Guide Stars On axis, ~ 8 mag R-mag 14.5 within 6.7’ to 7.7’ radius R-mag <17.5 within 52” to 105” radius On Axis, NIR, Jmag 15 Low Order sensing Sky coverage Close to “bright” stars 95%>90% Science target = TT reference 4LGSF config.NGS onlyØ12’Ø2’Ø20” WFS 1 NGS L3-CCD (40*40 sub app.) 4 LGS L3-CCD (40*40 sub app.) 1 TT L3-CCD 4 LGS L3-CCD (40*40 sub app.) 1 TT L3-CCD 4 LGS L3-CCD (40*40 sub app.) 1 IR Low Order Loop frequencyHO loop: ≥ 700 Hz TT loop: 250Hz HO loop: 1 kHz TT loop: 200Hz HO loop: 1 kHz LO loop: Hz