Événement - date MEA’10, December 09 th, /30 Performances analysis of controlled interval systems using H ∞ approach
Événement - date MEA’10, December 09 th, /30 Introduction Robust control approaches for (parametric) uncertain systems A posteriori performances analysis Example with the control of piezoelectric cantilevers Conclusion Outline
Événement - date MEA’10, December 09 th, /30 Introduction Robust control approaches for (parametric) uncertain systems A posteriori performances analysis Example with the control of piezoelectric cantilevers Conclusion
Événement - date MEA’10, December 09 th, /30 1- Introduction Control design requirements Good knowledge on the system Good knowledge on its environment accurate model Système physique ?
Événement - date MEA’10, December 09 th, /30 1- Introduction Characteristics of physical systems Complexity nonlinearities (hysteresis, creep: ”piezo systems”) time varying parameters etc vibration, variation of the ambient temperature, etc disturbance effects and imprecise measurements etc Sensitivity to the environmental conditions Modeling & control difficulties Non-perfect model Simplifications Model subject to parametric uncertainty
Événement - date MEA’10, December 09 th, /30 Reference Output Controller Model U + - uncertainties Control of parametric uncertain systems 1- Introduction Achieve robust performances Closed-loop control robust controller +
Événement - date MEA’10, December 09 th, /30 Robust controller: a controller that takes into account the uncertainties during the synthesis and ensures the stability and the performances for the closed-loop. Definitions Robust stability: the stability of the closed-loop obtained by a robust controller despite of uncertainties. Robust performances: the performances of the closed-loop ensured by a robust controller in presence of uncertainties. 1- Introduction
Événement - date MEA’10, December 09 th, /30 Introduction Robust control approaches for (parametric) uncertain systems A posteriori performances analysis Example with the control of piezoelectric cantilevers Conclusion
Événement - date MEA’10, December 09 th, /30 2- Robust control approaches for parametric uncertain systems H ∞ approach robust controller K(s) Output system Input (s) uncertainties matrix - Implementation difficulties - Complex controllers µ-synthesis H ∞ -loopshaping H ∞ -LPV H ∞ standard
Événement - date MEA’10, December 09 th, /30 Interval analysis replacing real numbers by intervals [Moore, 1966] Robust control using interval analysis 2- Robust control approaches for parametric uncertain systems Guaranteed stability & robust performances [Bondia. CDC03][Tchen. CCE00] [Khadraoui. CDC10] Principle: Theory of controlInterval analysis Robust control law Parametric uncertainty Modeling Required specification Accounts - Reduced order controllers - Natural modeling of parametric uncertainties
Événement - date MEA’10, December 09 th, /30 Introduction Robust control approaches for (parametric) uncertain systems A posteriori performances analysis Example with the control of piezoelectric cantilevers Conclusion
Événement - date MEA’10, December 09 th, /30 3- A posteriori performances analysis Objective Based on H ∞ standard, verify if the controller C(s) ensures required specifications. y e C(s)C(s) [G](s,[a],[b]) + - u - : an interval system, - C(s) : a given controller computed with interval control method. Specifications: - Settling time tr ≤ - Static error ≤ - No (or small) overshoot - etc… ? Does the controller ensures the required specifications.
Événement - date MEA’10, December 09 th, /30 Reminding H ∞ principle + - x2x2 T1(s)T1(s) T2(s)T2(s) + + x1x1 e1e1 e2e2 y1y1 y2y2 1- Stability: [Zames. 1966] Stability ensured Small gain theorem 3- A posteriori performances analysis The H ∞ norm of a SISO system G(s) is defined by:
Événement - date MEA’10, December 09 th, /30 Reminding H ∞ principle 2- H ∞ Standard : [Doyle and Glover. 1989] z S W1 z1 z2 C.S W2 W3 d y C(s) G(s) r u b Specifications: - Settling time/bandwidth - Static error/static gain - No (or small) overshoot - Control moderation - Disturbances rejection - Stability 3- A posteriori performances analysis
Événement - date MEA’10, December 09 th, /30 Choice of the Weighting functions bandwidth (min) Overshoot (max) static error (max) 3- A posteriori performances analysis Weighting W 1 ( s )
Événement - date MEA’10, December 09 th, /30 Choice of the Weighting functions 3- A posteriori performances analysis Weighting W 2 ( s ) Weighting W 3 ( s )
Événement - date MEA’10, December 09 th, /30 F l (P(s),C(s)) H ∞ standard problem: Compute the controller C ( s ) such as: ( ) - Stability - 3- A posteriori performances analysis W3 d y C(s) G(s) r u b S W1 C.S W2 z z1z1 z2z2 P(s): augmented system C(s)C(s) P(s)P(s) u H ∞ standard formalism
Événement - date MEA’10, December 09 th, /30 Interval closed-loop performances analysis via H ∞ -standard approach Specifications: - Settling time tr ≤ - Static error ≤ - No (or small) overshoot Given a controller C ( s ), If the controller satisfies: then, the required specifications are ensured defined in terms of weighting functions 3- A posteriori performances analysis y e C(s)C(s) [G](s,[a],[b]) + - u z W1(s)W1(s)
Événement - date MEA’10, December 09 th, /30 H ∞ norm of the sensitivity of an interval system Given an interval system, the maximal H ∞ norm of its sensitivity function is achieved at twelve (out of sixteen) Kharitonov vertices. [Long Wang, 2002] Let consider a sensitivity function of an open-loop interval system : 3- A posteriori performances analysis The four Kharitonov polynomials corresponding to and :
Événement - date MEA’10, December 09 th, /30 With: The maximal H ∞ norm of the sensitivity function is defined by: 3- A posteriori performances analysis
Événement - date MEA’10, December 09 th, /30 Introduction Robust control approaches for (parametric) uncertain systems A posteriori performances analysis Example with the control of piezoelectric cantilevers Conclusion
Événement - date MEA’10, December 09 th, /30 4- Example with the control of piezoelectric cantilevers Fig. 1: a) Manipulation of micro-object; b) Piezocantilever subjected to an electrical excitation (a) (b)
Événement - date MEA’10, December 09 th, /30 Interval model 4- Example with the control of piezoelectric cantilevers Specifications: - Settling time tr ≤ 30ms - Static error ≤ 1% - No overshoot Interval Control [Khadraoui, SWIM’10] Based on H ∞ standard, prove the robustness of the PI controller to ensure the required specification
Événement - date MEA’10, December 09 th, /30 From the required specification: Robustness study of the controller C ( s ) 4- Example with the control of piezoelectric cantilevers After numerical application: H ∞ Norm of
Événement - date MEA’10, December 09 th, /30 Using the method proposed in [Long Wang, 2002], we obtain: Specifications hold 4- Example with the control of piezoelectric cantilevers Robustness study of the controller C ( s ) H ∞ norm of the sensitivity function [S](s)
Événement - date MEA’10, December 09 th, /30 The controller has played its role and the required specifications are satisfied Fig. 1: magnitudes of the sensitivity function compared to the magnitude of the weighting function [ S ]( s ) = (1+C(s).[G](s,[a],[b])) -1 W1(s)W1(s) 1 4- Example with the control of piezoelectric cantilevers
Événement - date MEA’10, December 09 th, /30 Fig. 1: Experimental results using PI controller for two piezocantilevers compared with the desired behaviors 4- Example with the control of piezoelectric cantilevers
Événement - date MEA’10, December 09 th, /30 Introduction Robust control approaches for (parametric) uncertain systems A posteriori performances analysis Example with the control of piezoelectric cantilevers Conclusion
Événement - date MEA’10, December 09 th, /30 Experimental results with piezocantilevers prove the efficiency of the proposed method, H ∞ standard approach confirms the robustness of the computed controller, Performances analysis for a controlled system with uncertainties, The interval analysis represents a guaranteed tools for modeling and control system with uncertainties. 5- Conclusion
Événement - date MEA’10, December 09 th, /30 Thank You For Your Attention