Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.

Slides:



Advertisements
Similar presentations
Analysis of the Visible Absorption Spectrum of I 2 in Inert Solvents Using a Physical Model Joel Tellinghuisen Department of Chemistry Vanderbilt University.
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Victor Gorshelev, A. Serdyuchenko, M. Buchwitz, J. Burrows, University of Bremen, Germany; N. Humpage, J. Remedios, University of Leicester, UK IMPROVED.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
1 TCCON at Caltech, May 2008 New Line Parameters for Near-IR Methane and the Oxygen A-Band presented by Linda R. Brown (JPL) World-wide Effort Belgium,
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
HIGH-RESOLUTION ANALYSIS OF VARIOUS PROPANE BANDS: MODELING OF TITAN'S INFRARED SPECTRUM J.-M. Flaud.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
PRESSURE BROADENING AND SHIFT COEFFICIENTS FOR THE BAND OF 12 C 16 O 2 NEAR 6348 cm -1 D. CHRIS BENNER and V MALATHY DEVI Department of Physics,
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)
A.Perrin: Ohio-State 62th Molecular Symposium, June 2007 New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in.
Jet Propulsion Laboratory California Institute of Technology 1 V-1 11 th HITRAN Conference, Cambridge, MA, June 16-18, 2010 The importance of being earnest.
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Agnés Perrin Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS, Université Paris XII, Créteil C.Bray,
SPECTRAL LINE PARAMETERS FOR THE 9 BAND OF ETHANE Malathy Devi & Chris Benner, W&M Rinsland & Smith, NASA Langley Bob Sams & Tom Blake, PNNL Jean-Marie.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
High resolution studies of the 3 band of methyl fluoride in solid para-H 2 using a quantum cascade laser A.R.W. McKellar *, Asao Mizoguchi, Hideto Kanamori.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Columbus 2005, 20/6/ /6/05 ANALYSIS OF THE 3 / 7 / 9 BENDING TRIAD OF THE QUASI-SPHERICAL TOP MOLECULE SO 2 F 2 M. Rotger, V. Boudon, M. Lo ë te,
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
Explore. Discover. Understand. AIR-BROADENED LINE WIDTHS AND SHIFTS IN THE ν 3 BAND OF 16 O 3 AT TEMPERATURES BETWEEN 160 AND 300 K M. A. H. SMITH and.
Spectral Line Parameters Including Temperature Dependences of N 2 - and Self-broadened Widths in the Region of the 9 band of C 2 H 6 using a Multispectrum.
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
LINE PARAMETERS OF THE PH 3 PENTAD IN THE 4-5 µm REGION V. MALATHY DEVI and D. CHRIS BENNER College of William and Mary I.KLEINER CNRS/IPSL-Universites.
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
High-resolution spectroscopy of nitrous acid (HONO) and its deuterated species (DONO) in the far- and mid-IR spectral regions A. Dehayem-Kamadjeu, J. Orphal,
69th Meeting - Champaign-Urbana, Illinois, 2014 TI08 1/13 JPL Progress Report Accurate line intensities for 16 O 12 C 17 O (627) in the 2.1 µm region (the.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
68th Ohio State University Symposium on Molecular Spectroscopy June 17–21, 2013 SF 6 THE FORBIDDEN BAND UNVEILED V. BOUDON, Laboratoire Interdisciplinaire.
66th OSU International symposium on molecular spectroscopy
New 12 C 2 H 2 measurements using synchrotron SOLEIL David Jacquemart, Nelly Lacome, Olivier Piralli 66th OSU international symposium on molecular spectroscopy.
64th Ohio State University Symposium on Molecular Spectroscopy June 22–26, 2009 THE HIGH RESOLUTION FAR- INFRARED SPECTRUM OF METHANE AT THE SOLEIL SYNCHROTRON.
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
The 1 and 6 bands of diiodo- methane CH 2 I 2 around 3.3  m studied by high-resolution FTS J. Orphal, N. Ibrahim Laboratoire Interuniversitaire des Systèmes.
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
65th Ohio State University Symposium on Molecular Spectroscopy June 21–25, 2010 Stark spectrum simulation of X 2 Y 4 asymmetric molecules: application.
Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W.
70 th International Symposium on Molecular Spectroscopy / Champaign-Urbana, Illinois, USA, June 22–26, 2015 LOW-TEMPERATURE COLLISIONAL BROADENING IN THE.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
69th Meeting - Champaign-Urbana, Illinois, 2014 FE11 1/12 JPL Progress Report Keeyoon Sung, Geoffrey C. Toon, Linda R. Brown Jet Propulsion Laboratory,
SELF- AND CO 2 -BROADENED LINE SHAPE PARAMETERS FOR THE 2 AND 3 BANDS OF HDO V. MALATHY DEVI, D. CHRIS BENNER, Department of Physics, College of William.
TEMPERATURE DEPENDENCES OF AIR-BROADENING AND SHIFT PARAMETERS IN THE ν 3 BAND OF OZONE M. A. H. SMITH NASA Langley Research Center, Hampton, VA
Infrared Spectra of N 2 -broadened 13 CH 4 at Titan Atmospheric Temperatures Mary Ann H. Smith 1, Keeyoon Sung 2, Linda R. Brown 2, Timothy J. Crawford.
Line Positions and Intensities for the ν 12 Band of 13 C 12 CH 6 V. Malathy Devi 1, D. Chris Benner 1, Keeyoon Sung 2, Timothy J. Crawford 2, Arlan W.
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
FTS Studies Of The Isotopologues Of CO 2 Toward Creating A Complete And Highly Accurate Reference Standard Ben Elliott, Keeyoon Sung, Charles Miller JPL,
EXPERIMENTAL TRANSMISSION SPECTRA OF HOT AMMONIA IN THE INFRARED Monday, June 22 nd 2015 ISMS 70 th Meeting Champaign, Illinois EXPERIMENTAL TRANSMISSION.
1 70 th Symp. Mol. Spectrosc MJ14 13 CH 4 in the Octad Measurement and modeling of cold 13 CH 4 spectra from 2.1 to 2.7 µm Linda R. Brown 1, Andrei.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
> ISMS 2017 > Joep Loos • P2355: Experimental line list of water vapor > Experimental line list of water vapor absorption lines in the spectral.
International Symposium on Molecular Spectroscopy
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
High-Resolution Spectroscopy and Analysis of the n3/2n4 Dyad of CF4
NH3 measurements in the far-IR
Experimental and Theoretical He-broadened Line Parameters of CO in the Fundamental Band Adriana Predoi-Cross1*, Hoimonti Rozario1, Koorosh Esteki1, Shamria.
Presentation transcript:

Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique, Interactions et Réactivité; Université Pierre et Marie Curie- Paris6, CNRS, UMR 7075, France 2 Laboratoire Inter-Universitaire des Systèmes Atmosphériques; Universités Paris 12 et Paris 7, CNRS, UMR 7583, FRANCE

→ Atmospheric trace gas (≈ 10 pptv) of both natural and anthropogenic origins (oceanic emission, biomass burning, leaded gasoline, agricultural pesticide …) → Deadly toxic gas for human and animal life when exposed to high concentration → Major contributor to stratospheric bromine which participates to ozone destruction Methyl Bromide (CH 3 Br)

→ Previous works concern mainly line positions analysis (see Graner JMS 1981;90: ) → Two recent works on line positions and intensities in the 7-μm spectral region Spectroscopic line parameters in literature (Kwabia Tchana et al. JMS 2004;228: ; Kwabia Tchana et al. JMS 2006;235:132-43) → No spectroscopic data is available in atmospheric database such as HITRAN or GEISA → No work on broadening coefficients Presented in the second part of this talk

CH 3 Br in our atmosphere → Not yet detected in atmospheric spectra → Compare to CH 3 Cl, the quantity in our atmosphere is 10 time less → Compare to Cl, Br radicals are 10 time more efficient for the ozone destruction Complete line lists are necessary to detect CH 3 Br

CH 3 Br in the 10 μm spectra region

Experimental conditions for spectra recorded around 10 μm → Rapid scan interferometer Bruker IFS 120 HR (LADIR, Paris) (Δmax = 450 cm; FWHM =1.1  10  3 cm  1 ) Absorbing sample Natural CH 3 Br50.54 % of CH 3 79 Br % of CH 3 81 Br Stated purity99.50 % Experimental conditions S/N ratio  100 _________________________________________________________________ _ # CH 3 Br pressure N 2 pressure Temperature Absorption path (mbar) (mbar) (K) (cm) ________________________________________________________________ __ ________________________________________________________________

Preliminary work → Phase correction for each spectrum (Mertz method) → Determination of an average effective iris radius → Wavenumber calibration using NH 3 transitions and HITRAN2004 wavenumbers as etalon = 1.789(40)×10 –6 scattering (1SD) of 0.04×10 –3 cm –1 at 1000 cm –1

Line parameters measurement for transitions having J and K ranging from 0 to 55 and from 0 to 9 → Use of a multispectrum fitting procedure (Eur Phys J D 2001;14:55-69.) Position, intensity and broadening coefficients of a same line are constrained to be the same during the simultaneous fit of the six spectra. Use of a Voigt profile. For broadening coefficients we assumed that: → 1200 transitions fitted between 880 and 1050 cm  1 of both CH 3 79 Br and CH 3 81 Br

Two models have been used to analyze measured line intensities → Treatment using the eigenvectors as a linear combination of the zero order basis wavefunction (ℓ-type interactions) (Tarrago G, Delaveau M. Triad v n (A 1 ), v t (E), v t’ (E) in C 3v Molecules: Energy and Intensity Formulation (Computer Programs). J Mol Spectrosc 1986;119: ) → Classical Herman Wallis treatment with |v,ℓ,J,K> as eigenvectors (Watson JKG. Quadratic Herman-Wallis Factors for Symmetric- and Asymmetric- Top Molecules. J Mol Spectrosc 1992;153: )

= 0.2 ± 3.7 % = –0.01 ± 3.84 % ;  R 0  2 = 2.688(6)10  3 Debye 2 A K = 5.3(2)10  3 d 6 (2) =1.41(4)×10 -4 d 6 2 = (8)10  3 Debye 2 → weak ℓ-type interactions for the v 6 level A J = 0

Strong K-dependence No significant J -dependence

Ratio of the two calculations for measured transitions (1200) P Q(1) R Q(1) R Q(2) P P(1) R R(1) P Q(2)

Ratio of the two calculations for extrapolated transitions (18000 transitions) → No line intensity cutoff, but J max =60 and K max =30 P Q(1) R Q(1) R Q(2) P P(1) R R(1) P Q(2)

P Q(1) branch R Q(1) branch Comparison with measurements

Empirical model has been used to compute measured self and N 2 widths → For C 3v molecules the J-and K-dependences of the widths have already been observed for: NH 3 (Nemtchinov V, Sung, K, Varanasi P. Measurements of line intensities and half-widths in the 10-μm bands of 14 NH 3. JQSRT 2004;83: ) CH 3 D ( Predoi-Cross A, Hambrook K, Brawley-Tremblay S, Bouanich JP, Malathy Devi V, Smith MAH. Measurements and theoretical calculations of N 2 -broadening and N 2 -shifting coefficients in the ν 2 band of CH 3 D. J Mol Spectrosc 2006;235;35-53.) Analysis of the measured self and N 2 widths

Empirical model used to compute measured self and N 2 widths → For transitions having same value of J inf

Empirical model used to compute measured self widths → Fit of the two coefficients a J 0 and a J 2

Empirical model used to compute measured N 2 widths → Fit of the two coefficients a J 0 and a J 2

Comparison between measured and calculated self-widths

Comparison between measured and calculated N 2 -widths

Conclusion for the 10 μm region based on the fit of 1200 measurements For positions: The average discrepancy obs-calc is equal to (0.001 ± 0.114)×10 -3 cm -1, The accuracy is estimated to be better than 0.2×10 -3 cm -1. For intensities: The average discrepancy obs-calc is equal to 0.2 ± 3.8 %, The rotational dependence is reproduced with accuracy around 5 %. For widths: The average discrepancy %self is equal to 0.8 ± 6.4 %, The average discrepancy % N 2 is equal to –0.3 ± 3.3 %. The J and K dependence of the measurement is reproduced with accuracy better than 10 % for the self-broadening coefficients, and around 5 % for the N 2 -broadening coefficients. → List of these parameters will be proposed to atmospheric databases

CH 3 Br in the 7 μm spectra region

Experimental conditions for spectra recorded around 7 μm → Rapid scan interferometer Bruker IFS 120 HR (LADIR, Paris) (Δmax = 450 cm; FWHM =1.1  10  3 cm  1 ) Experimental conditions Absorbing sample Natural CH 3 Br % of CH 3 79 Br and % of CH 3 81 Br Stated purity % Experimental conditions (SNR  100) ____________________________________________ # CH 3 Br pressure Temperature Absorption path (mbar) (K) (cm) ____________________________________________ ____________________________________________

ν 2 parallel band ν 5 perpendicular band

Determination of line intensities using a single spectrum fitting procedure → Around 320 transitions have been measured

→ Treatment using the eigenvectors as a linear combination of the zero order basis wavefunction (ℓ-type interactions) (Tarrago G, Delaveau M. Triad v n (A 1 ), v t (E), v t’ (E) in C 3v Molecules: Energy and Intensity Formulation (Computer Programs). J Mol Spectrosc 1986;119: ) Analysis of line intensities

3.0 % 2.6 % % rms % 3.0 % % rms # lines 5 (b) # lines 2 (b) 3 % 2 %10% ≤ δ < 17% 3 % 2 %7% ≤ δ < 10% 22 % 16 %4% ≤ δ < 7% 72 % of the lines 80 %0 ≤ δ (a) < 4% CH 3 81 Br CH 3 79 BrStatistics – 0.111(10)– (92) × (79) (72) (18) (16) CH 3 81 Br CH 3 79 BrDipole Moment Derivatives Dipole Moment Derivatives (in Debye) for the 2 and 5 Bands of CH 3 79 Br and CH 3 81 Br (320 lines studied) (a) δ = |calc – obs| / obs in %. (b) Number of transitions included in the least squares fits.

Synthetic spectrum

Conclusion for the 7 μm region For positions: (based on the fit of 7500 line positions) The average discrepancy obs-calc is equal to (0.002 ± 0.784)×10 -3 cm -1, The accuracy is estimated to be better than 1×10 -3 cm -1. For intensities: (based on the fit of 300 line intensities) The average discrepancy obs-calc is equal to 0.04 ± 3.9 %, The rotational dependence is reproduced with accuracy around 5 %. For widths: New spectra have been recorded with CH 3 Br and N 2, and will be analyzed to observe or not a vibrational dependence for broadening coefficients. At the present time we suggested that widths obtained in the 10 μm region could be applied to the 7 μm region. → List at 7 μm will be proposed to atmospheric databases

Methyl Bromide will probably be the next new molecule in HITRAN The number 40