Monday, Dec. 1, 2003PHYS 1443-003, Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #23 Monday, Dec. 1, 2003 Dr. Jaehoon Yu 1.Simple Harmonic.

Slides:



Advertisements
Similar presentations
Simple Harmonic Motion
Advertisements

Spring 2002 Lecture #23 Dr. Jaehoon Yu 1.Superposition and Interference 2.Speed of Waves on Strings 3.Reflection and Transmission 4.Sinusoidal.
بسم الله الرحمن الرحيم.
Dr. Jie ZouPHY Chapter 16 Wave Motion (Cont.)
Chapter 13 VibrationsandWaves. Hooke’s Law F s = - k x F s = - k x F s is the spring force F s is the spring force k is the spring constant k is the spring.
Simple Harmonic Motion
Chapter 16 Waves (I) What determines the tones of strings on a guitar?
Chapter 13 Vibrations and Waves.
Monday, Nov. 29, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Simple Harmonic Motion 2.Equation of SHM 3.Simple Block Spring System 4.Energy of SHO.
Thursday, June 19, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #10 Thursday, June 19, 2014 Dr. Jaehoon Yu Uniform Circular.
Wednesday, Dec. 5, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #25 Wednesday, Dec. 5, 2007 Dr. Jae Yu Simple Harmonic.
Tuesday, Nov. 25, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #24 Tuesday, Nov. 25, 2014 Dr. Jaehoon Yu Refresher: Simple.
Simple Harmonic Motion
Monday, May 3, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #24 Monday, May 3, 2004 Dr. Jaehoon Yu Waves Speed of Waves.
Monday, Aug. 2, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 501 Lecture #17 Monday, Aug. 2, 2004 Dr. Jaehoon Yu Flow Rate and Equation.
Monday, Nov. 25, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #20 Monday, Nov. 25, 2002 Dr. Jaehoon Yu 1.Simple Harmonic.
Chapter 13 Vibrations and Waves.
Chapter 11 Elasticity And Periodic Motion. Goals for Chapter 11 To follow periodic motion to a study of simple harmonic motion. To solve equations of.
Vibration and Waves AP Physics Chapter 11.
Wednesday, Aug. 4, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 501 Lecture #18 Wednesday, Aug. 4, 2004 Dr. Jaehoon Yu Equation.
Waves and Harmonic Motion AP Physics M. Blachly. Review: SHO Equation Consider a SHO with a mass of 14 grams: Positions are given in mm.
Chapter 13 VibrationsandWaves. Hooke’s Law F s = - k x F s = - k x F s is the spring force F s is the spring force k is the spring constant k is the spring.
Tuesday, Sept. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #10 Tuesday, Sept. 23, 2014 Dr. Jaehoon Yu Newton’s Laws.
PHYS 1441 – Section 002 Lecture #21 Monday, April 15, 2013 Dr. Jaehoon Yu Moment of Inertia Torque and Angular Acceleration Rotational Kinetic Energy Today’s.
Wednesday, Nov. 24, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Quiz Workout 2.Buoyant Force and Archimedes’ Principle 3.Flow Rate and Continuity Equation.
Hooke’s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring.
Wednesday, Mar. 5, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Mar. 5, 2008 Dr. Jaehoon Yu Static and.
Monday, June 11, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Monday, June 11, 2007 Dr. Jaehoon Yu Forces in Non-uniform.
Wednesday, Nov. 19, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer 1.Fluid.
Wednesday, Apr. 28, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #23 Wednesday, Apr. 28, 2004 Dr. Jaehoon Yu Period.
Periodic Motion 1 Chapter 15 Oscillatory Motion April 17 th, 2006.
Wednesday, June 7, 2006PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Wednesday, June 7, 2006 Dr. Jaehoon Yu Application.
Chapter 13: Vibrations and Waves
Wednesday, Nov. 20, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #19 Monday, Nov. 20, 2002 Dr. Jaehoon Yu 1.Energy of.
Wednesday, June 15, 2011 PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #7 Wednesday, June 15, 2011 Dr. Jaehoon Yu Force of.
Chapter 16 Waves-I Types of Waves 1.Mechanical waves. These waves have two central features: They are governed by Newton’s laws, and they can exist.
Vibrations and Waves.  Simple harmonic is the simplest model possible of oscillatory motion, yet it is extremely important.  Examples: › a grandfather.
Chapter 16 Waves-I Types of Waves 1.Mechanical waves. These waves have two central features: They are governed by Newton’s laws, and they can exist.
Chapter 11 Vibrations and Waves.
Wednesday, Nov. 14, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #20 Wednesday, Nov. 14, 2007 Dr. Jae Yu Moment of Inertia.
Monday, Oct. 8, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #10 Monday, Oct. 8, 2007 Dr. Jaehoon Yu Uniform and Non-uniform.
Monday, Nov. 18, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #18 Monday, Nov. 18, 2002 Dr. Jaehoon Yu 1.Elastic Properties.
Wednesday, Dec. 3, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #24 Wednesday, Dec. 3, 2003 Dr. Jaehoon Yu 1.Sinusoidal.
Thursday, June 7, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #7 Thursday, June 7, 2007 Dr. Jaehoon Yu Application.
Monday, June 9, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #7 Monday, June 9, 2008 Dr. Jaehoon Yu Exam problem solving.
Spring 2002 Lecture #18 Dr. Jaehoon Yu 1.Simple Harmonic Motion 2.Energy of the Simple Harmonic Oscillator 3.The Pendulum Today’s Homework Assignment.
Wednesday, Sept. 22, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Forces of Friction 2.Uniform and Non-uniform Circular Motions 3.Resistive Forces and.
Wednesday, Oct. 2, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #6 Wednesday, Oct. 2, 2002 Dr. Jaehoon Yu 1.Newton’s laws.
Wednesday, Oct. 10, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #11 Wednesday, Oct. 10, 2007 Dr. Jaehoon Yu Free Fall.
Wednesday, Oct. 13, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #11 Wednesday, Oct. 13, 2010 Dr. Jaehoon Yu Force of.
Monday April 26, PHYS , Spring 2004 Dr. Andrew Brandt PHYS 1443 – Section 501 Lecture #24 Monday, April 26, 2004 Dr. Andrew Brandt 1.Fluid.
Oscillations. Periodic Motion Periodic motion is motion of an object that regularly returns to a given position after a fixed time interval A special.
Wednesday, Sept. 24, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #9 Forces of Friction Uniform and Non-uniform Circular.
Monday, Dec. 2, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #22 Monday, Dec. 2, 2002 Dr. Jaehoon Yu 1.Absolute and Relative.
Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves.
Chapter 13 Vibrations and Waves. Hooke’s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring.
Chapter 13: Oscillatory Motion
PHYS 1443 – Section 003 Lecture #22
Chapter Thirteen Vibrations and Waves.
Voronkov Vladimir Vasilyevich
PHYS 1443 – Section 003 Lecture #21
PHYS 1443 – Section 003 Lecture #22
PHYS 1443 – Section 003 Lecture #22
PHYS 1443 – Section 003 Lecture #19
PHYS 1443 – Section 001 Lecture #9
PHYS 1443 – Section 501 Lecture #26
PHYS 1443 – Section 002 Lecture #25
PHYS 1443 – Section 002 Lecture #10
PHYS 1443 – Section 003 Lecture #20
PHYS 1443 – Section 501 Lecture #25
Presentation transcript:

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #23 Monday, Dec. 1, 2003 Dr. Jaehoon Yu 1.Simple Harmonic Motion and Uniform Circular Motion 2.Damped Oscillation 3.Waves 4.Speed of Waves 5.Sinusoidal Waves 6.Rate of Wave Energy Transfer 7.Superposition and Interference 8.Reflection and Transmission

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 2 Announcements Homework # 12 –Due at 5pm, Friday, Dec. 5 The final exam –On Monday, Dec. 8, 11am – 12:30pm in SH103. –Covers: Chap. 10 not covered in Term #2 – Ch15. Need to talk to me? I will be around this week.

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 3 Simple Harmonic and Uniform Circular Motions Uniform circular motion can be understood as a superposition of two simple harmonic motions in x and y axis. When the particle rotates at a uniform angular speed , x and y coordinate position become Since the linear velocity in a uniform circular motion is A , the velocity components are t=0 x y O P  A x y O P  A Q  x y t=t  =  t+  x y O P  A Q v vxvx x y O P  A Q a axax Since the radial acceleration in a uniform circular motion is v 2 / A=   , the components are

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 4 Example for Uniform Circular Motion A particle rotates counterclockwise in a circle of radius 3.00m with a constant angular speed of 8.00 rad/s. At t=0, the particle has an x coordinate of 2.00m and is moving to the right. A) Determine the x coordinate as a function of time. Since the radius is 3.00m, the amplitude of oscillation in x direction is 3.00m. And the angular frequency is 8.00rad/s. Therefore the equation of motion in x direction is Since x=2.00, when t=0 However, since the particle was moving to the right  =-48.2 o, Using the displcement Find the x components of the particle’s velocity and acceleration at any time t. Likewise, from velocity

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 5 Damped Oscillation More realistic oscillation where an oscillating object loses its mechanical energy in time by a retarding force such as friction or air resistance. The angular frequency  for this motion is The solution for the above 2 nd order differential equation is We express the angular frequency as This equation of motion tells us that when the retarding force is much smaller than restoration force, the system oscillates but the amplitude decreases, and ultimately, the oscillation stops. Let’s consider a system whose retarding force is air resistance R=-b v (b is called damping coefficient) and restoration force is -kx Where as the natural frequency  0 Damping Term

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 6 More on Damped Oscillation As the retarding force becomes larger, the amplitude reduces more rapidly, eventually stopping at its equilibrium position The motion is called Underdamped when the magnitude of the maximum retarding force R max = bv max <kA The system is Critically damped How do you think the damping motion would change as retarding force changes? Under what condition this system does not oscillate? If the retarding force is larger than restoration force The system is Overdamped What do you think happen? Once released from non-equilibrium position, the object would return to its equilibrium position and stops. Once released from non-equilibrium position, the object would return to its equilibrium position and stops, but a lot slower than before

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 7 Waves Waves do not move medium rather carry energy from one place to another Two forms of waves –Pulse –Continuous or periodic wave Wave can be characterized by –Amplitude –Wave length –Period Two types of waves –Transverse Wave –Longitudinal wave Sound wave

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 8 Speed of Transverse Waves on Strings How do we determine the speed of a transverse pulse traveling on a string? If a string under tension is pulled sideways and released, the tension is responsible for accelerating a particular segment of the string back to the equilibrium position. The speed of the wave increases. So what happens when the tension increases? Which law does this hypothesis based on? Based on the hypothesis we have laid out above, we can construct a hypothetical formula for the speed of wave For the given tension, acceleration decreases, so the wave speed decreases. Newton’s second law of motion The acceleration of the particular segment increases Which means? Now what happens when the mass per unit length of the string increases? T: Tension on the string  : Unit mass per length Is the above expression dimensionally sound? T=[MLT -2 ],  =[ML -1 ] (T/  ) 1/2 =[L 2 T -2 ] 1/2 =[LT -1 ]

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 9 Speed of Waves on Strings cont’d Let’s consider a pulse moving right and look at it in the frame that moves along with the the pulse. Since in the reference frame moves with the pulse, the segment is moving to the left with the speed v, and the centripetal acceleration of the segment is What is the mass of the segment when the line density of the string is  ? Using the radial force component Now what do the force components look in this motion when  is small? T T FrFr O   ss v R Therefore the speed of the pulse is

Monday, Dec. 1, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 10 Example for Traveling Wave A uniform cord has a mass of 0.300kg and a length of 6.00m. The cord passes over a pulley and supports a 2.00kg object. Find the speed of a pulse traveling along this cord. Thus the speed of the wave is Since the speed of wave on a string with line density  and under the tension T is M=2.00kg 1.00m 5.00m The line density  is The tension on the string is provided by the weight of the object. Therefore