Web Mining ( 網路探勘 ) 1 1011WM01 TLMXM1A Wed 8,9 (15:10-17:00) U705 Introduction to Web Mining ( 網路探勘導論 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept.

Slides:



Advertisements
Similar presentations
Chapter 5: Text and Web Mining
Advertisements

Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Data Mining 資料探勘 文字探勘與網頁探勘 (Text and Web Mining) Min-Yuh Day 戴敏育
Social Media Marketing Analytics 社群網路行銷分析 SMMA02 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 社群網路行銷分析 (Social Media Marketing Analytics) Min-Yuh.
Chapter 0 Computer Science (CS) 計算機概論 教學目標 瞭解現代電腦系統之發展歷程 瞭解電腦之元件、功能及組織架構 瞭解電腦如何表示資料及其處理方式 學習運用電腦來解決問題 認知成為一位電子資訊人才所需之基本條 件 認知進階電子資訊之相關領域.
元智大學應用外語系碩士班 Department of Foreign Languages and Applied Linguistics Master’s Program.
1 94 學年度碩士班新生座談 擬定 修正. 2 李之中 Chi-Chung Lee Assistant professor Department of Information Management, Chung Hwa University Office.
統計資訊軟體應用 授課者:蔡桂宏 系別:應用統計資訊系 職務:專任副教授 連絡: 轉 3485 系辦
CS1103 電機資訊工程實習 Department of Computer Science National Tsing Hua University.
論文研討 ( 一 ) B 組 課程簡介 劉美纓 / 尚榮安 / 胡凱傑 2009/09/17. 一、課程基本資料 科目名稱: ( 中文 ) 論文研討(一)B組 ( 英文 ) SEMINARS (I) 開課學期: 98 學年度第 1 學期 開課班級:企碩一 學 分 數: 2 學分 星期節次: 四 34.
大華技術學院九十三學年度 資工系計算機概論教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:計算機概論與實習 適用班別:夜資工技一A 授課老師:吳弘翔 學分數: 4 修別:必修 老師信箱:
教材名稱:網際網路安全之技術及其應用 (編號: 41 ) 計畫主持人:胡毓忠 副教授 聯絡電話: 教材網址: 執行單位: 政治大學資訊科學系.
1 高等演算法 授課老師 : 陳建源 研究室 : 法 401 網站
大華技術學院九十五學年度 資工系計算機概論教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:計算機概論與實習 授課老師:吳弘翔 學分數: 4 修別:必修 老師信箱:
Chapter 5: Text and Web Mining
Chapter 5: Text and Web Analytics
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 壹 企業研究導論.
1 高等管理資訊系統. 2 授課教師 : 王耀德 研究室 : 主顧 686 電話 : (04) # 課輔時間 Wednesday 09:00~13:00 介紹.
Case Study for Information Management 資訊管理個案
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Social Media Marketing Research 社會媒體行銷研究 SMMR01 TMIXM1A Thu 7,8 (14:10-16:00) U505 Course Orientation for Social Media Marketing Research Min-Yuh.
Business Intelligence 商業智慧 BI01 IM EMBA Fri 12,13,14 (19:20-22:10) D502 Introduction to Business Intelligence 商業智慧導論 Min-Yuh Day 戴敏育 Assistant Professor.
Social Media Marketing Research 社會媒體行銷研究 SMMR06 TMIXM1A Thu 7,8 (14:10-16:00) L511 Measuring the Construct Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
企業網路系統研究 (Enterprise Networking Systems Research) (VMware vSphere) VM01 MI4 Thu 9,10 (16:10-18:00) (B310) Course Introduction ( 課程介紹 ) Min-Yuh Day.
社會媒體服務專題 Special Topics in Social Media Services 淡江大學 淡江大學 資訊管理學系 資訊管理學系 Dept. of Information ManagementDept. of Information Management, Tamkang UniversityTamkang.
Web Mining ( 網路探勘 ) WM12 TLMXM1A Wed 8,9 (15:10-17:00) U705 Web Usage Mining ( 網路使用挖掘 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Web Mining ( 網路探勘 ) WM09 TLMXM1A Wed 8,9 (15:10-17:00) U705 Structured Data Extraction ( 結構化資料擷取 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept.
Decision Support and Business Intelligence Systems (9 th Ed., Prentice Hall) Chapter 7: Text and Web Mining.
Decision Support and Business Intelligence Systems (9 th Ed., Prentice Hall) Chapter 7: Text and Web Mining and text analytics.
Social Media Management 社會媒體管理 SMM01 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Marketing Management 社會媒體行銷管理
Web Mining ( 網路探勘 ) WM10 TLMXM1A Wed 8,9 (15:10-17:00) U705 Information Integration ( 資訊整合 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of.
Special Topics in Social Media Services 社會媒體服務專題 1 992SMS07 TMIXJ1A Sat. 6,7,8 (13:10-16:00) D502 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information.
Data Mining 資料探勘 Introduction to Data Mining 資料探勘導論 Min-Yuh Day 戴敏育
商業智慧實務 Practices of Business Intelligence BI07 MI4 Wed, 9,10 (16:10-18:00) (B113) 文字探勘與網路探勘 (Text and Web Mining) Min-Yuh Day 戴敏育 Assistant Professor.
商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B113) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.
Social Media Marketing Management 社會媒體行銷管理 SMMM12 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 確認性因素分析 (Confirmatory Factor Analysis) Min-Yuh Day 戴敏育.
Social Media Marketing Analytics 社群網路行銷分析 SMMA04 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 測量構念 (Measuring the Construct) Min-Yuh Day 戴敏育.
Business Intelligence Trends 商業智慧趨勢 BIT06 MIS MBA Mon 6, 7 (13:10-15:00) Q407 文字探勘與網路探勘 (Text and Web Mining) Min-Yuh Day 戴敏育 Assistant Professor.
Data Mining 資料探勘 DM04 MI4 Thu 9, 10 (16:10-18:00) B216 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Web Mining ( 網路探勘 ) WM04 TLMXM1A Wed 8,9 (15:10-17:00) U705 Unsupervised Learning ( 非監督式學習 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of.
Decision Support Systems
Case Study for Information Management 資訊管理個案 CSIM4B08 TLMXB4B Thu 8, 9, 10 (15:10-18:00) B508 Securing Information System: 1. Facebook, 2. European.
Case Study for Information Management 資訊管理個案 CSIM4B03 TLMXB4B (M1824) Tue 3,4 (10:10-12:00) L212 Thu 9 (16:10-17:00) B601 Global E-Business and Collaboration:
商業智慧實務 Practices of Business Intelligence BI01 MI4 Wed, 9,10 (16:10-18:00) (B130) 商業智慧導論 (Introduction to Business Intelligence) Min-Yuh Day 戴敏育.
1 IMM472 資料探勘 陳春賢. 2 Lecture I Class Introduction.
Business Intelligence Trends 商業智慧趨勢 BIT01 MIS MBA Mon 6, 7 (13:10-15:00) Q407 Course Orientation for Business Intelligence Trends 商業智慧趨勢課程介紹 Min-Yuh.
Web Mining ( 網路探勘 ) WM05 TLMXM1A Wed 8,9 (15:10-17:00) U705 Partially Supervised Learning ( 部分監督式學習 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Data Mining 資料探勘 DM04 MI4 Wed, 6,7 (13:10-15:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Marketing Management 社會媒體行銷管理 SMMM01 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 Course Orientation of Social Media Marketing Management.
Web Mining ( 網路探勘 ) WM06 TLMXM1A Wed 8,9 (15:10-17:00) U705 Information Retrieval and Web Search ( 資訊檢索與網路搜尋 ) Min-Yuh Day 戴敏育 Assistant Professor.
Social Media Marketing Research 社會媒體行銷研究 SMMR04 TMIXM1A Thu 7,8 (14:10-16:00) L511 Marketing Research Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Data Mining 資料探勘 DM01 MI4 Wed, 6,7 (13:10-15:00) (B216) Introduction to Data Mining ( 資料探勘導論 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of.
1 94 學年度碩士班新生座談. 2 李之中 Chi-Chung Lee Assistant professor Department of Information Management, Chung Hwa University Office : M302-1 Phone : 03- coming.
Data Mining 資料探勘 Introduction to Data Mining (資料探勘導論) Min-Yuh Day 戴敏育
Case Study for Information Management 資訊管理個案
Big Data Mining 巨量資料探勘 DM01 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) Course Orientation for Big Data Mining ( 巨量資料探勘課程介紹 ) Min-Yuh Day 戴敏育.
Social Computing and Big Data Analytics 社群運算與大數據分析
Case Study for Information Management 資訊管理個案 CSIM4C01 TLMXB4C Mon 8, 9, 10 (15:10-18:00) B602 Introduction to Case Study for Information Management.
Case Study for Information Management 資訊管理個案 CSIM4C01 TLMXB4C (M1824) Tue 2 (9:10-10:00) L212 Thu 7,8 (14:10-16:00) B601 Introduction to Case Study.
社群網路行銷管理 Social Media Marketing Management SMMM01 MIS EMBA (M2200) (8615) Thu, 12,13,14 (19:20-22:10) (D309) 社群網路行銷管理課程介紹 (Course Orientation for.
Chapter 7: Text Analytics, Text Mining, and Sentiment Analysis
Case Study for Information Management 資訊管理個案 CSIM4B01 TLMXB4B (M1824) Tue 2, 3, 4 (9:10-12:00) B502 Introduction to Case Study for Information Management.
Chapter 8: Web Analytics, Web Mining, and Social Analytics
Big Data Mining 巨量資料探勘 DM05 MI4 (M2244) (3094) Tue, 3, 4 (10:10-12:00) (B216) 分群分析 (Cluster Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授.
Case Study for Information Management 資訊管理個案
分群分析 (Cluster Analysis)
Chapter 7: Text and Web Mining
Case Study for Information Management 資訊管理個案
Case Study for Information Management 資訊管理個案
Presentation transcript:

Web Mining ( 網路探勘 ) WM01 TLMXM1A Wed 8,9 (15:10-17:00) U705 Introduction to Web Mining ( 網路探勘導論 ) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang University 淡江大學 淡江大學 資訊管理學系 資訊管理學系 tku.edu.tw/myday/

淡江大學 101 學年度第 1 學期 課程教學計畫表 ( ) 課程名稱: Web Mining ( 網路探勘 ) 授課教師:戴敏育 (Min-Yuh Day) 開課系級:資管一碩士班A (TLMXM1A) 開課資料:選修 單學期 2 學分 (2 Credits, Elective) 上課時間:週三 8, 9 (Wed 15:10-17:00) 上課教室: U705 2

課程簡介 本課程介紹網路探勘的基礎概念及技術。 課程內容包括 – 網路探勘導論、 – 關聯規則和序列模式、 – 監督式學習、 – 非監督式學習、 – 部分監督式學習、 – 資訊檢索與網路搜尋、 – 社會網路分析、 – 網路爬行、 – 結構化資料擷取、 – 資訊整合、 – 意見探勘與情感分析、 – 網路使用挖掘。 3

Course Introduction This course introduces the fundamental concepts and technology of web mining. Topics include – Introduction to Web Mining, – Association Rules and Sequential Patterns, – Supervised Learning, – Unsupervised Learning, – Partially Supervised Learning, – Information Retrieval and Web Search, – Social Network Analysis, – Web Crawling, – Structured Data Extraction, – Information Integration, – Opinion Mining and Sentiment Analysis, and – Web Usage Mining. 4

課程目標 瞭解及應用網路探勘基本概念與技術。 進行網路探勘相關之資訊管理研究。 5

Objective Students will be able to understand and apply the fundamental concepts and technology of web mining. Students will be able to conduct information systems research in the context of web mining. 6

週次 日期 內容( Subject/Topics ) 1 101/09/12 Introduction to Web Mining ( 網路探勘導論 ) 2 101/09/19 Association Rules and Sequential Patterns ( 關聯規則和序列模式 ) 3 101/09/26 Supervised Learning ( 監督式學習 ) 4 101/10/03 Unsupervised Learning ( 非監督式學習 ) 5 101/10/10 國慶紀念日 ( 放假一天 ) 6 101/10/17 Paper Reading and Discussion ( 論文研讀與討論 ) 7 101/10/24 Partially Supervised Learning ( 部分監督式學習 ) 8 101/10/31 Information Retrieval and Web Search ( 資訊檢索與網路搜尋 ) 9 101/11/07 Social Network Analysis ( 社會網路分析 ) 課程大綱 ( Syllabus) 7

週次 日期 內容( Subject/Topics ) /11/14 Midterm Presentation ( 期中報告 ) /11/21 Web Crawling ( 網路爬行 ) /11/28 Structured Data Extraction ( 結構化資料擷取 ) /12/05 Information Integration ( 資訊整合 ) /12/12 Opinion Mining and Sentiment Analysis ( 意見探勘與情感分析 ) /12/19 Paper Reading and Discussion ( 論文研讀與討論 ) /12/26 Web Usage Mining ( 網路使用挖掘 ) /01/02 Project Presentation 1 ( 期末報告 1) /01/09 Project Presentation 2 ( 期末報告 2) 課程大綱 ( Syllabus) 8

教材課本與參考書籍 教材課本 (Textbook) Bing Liu (2011), “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,” Springer, 2nd Edition. 參考書籍 (References) – Related Papers. 9

學期成績計算方式 平時評量: 50.0 % 其他 ( 課堂參與及報告討論表現 ) : 50.0 % 10

Introduction to Web Mining Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data Web Mining and Social Networking Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites Text Mining: Applications and Theory Search Engines – Information Retrieval in Practice 11

ACM Categories and Subject Descriptors I.2.7 [Artificial Intelligence] – Natural Language Processing Text analysis H.2.8 [Database Management] – Database Applications Data mining 12

Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data 13 Source:

Web Mining and Social Networking 14

Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites 15

Text Mining 16

Search Engines: Information Retrieval in Practice 17

Web Mining Web mining – discover useful information or knowledge from the Web hyperlink structure, page content, and usage data. Three types of web mining tasks – Web structure mining – Web content mining – Web usage mining 18 Source: Bing Liu (2009) Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data

Text Mining Text mining (text data mining) – the process of deriving high-quality information from text Typical text mining tasks – text categorization – text clustering – concept/entity extraction – production of granular taxonomies – sentiment analysis – document summarization – entity relation modeling i.e., learning relations between named entities. 19

Web Mining Overview Web is the largest repository of data Data is in HTML, XML, text format Challenges (of processing Web data) – The Web is too big for effective data mining – The Web is too complex – The Web is too dynamic – The Web is not specific to a domain – The Web has everything Opportunities and challenges are great! Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 20

Web Mining Web mining (or Web data mining) is the process of discovering intrinsic relationships from Web data (textual, linkage, or usage) Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 21

Web Content/Structure Mining Mining of the textual content on the Web Data collection via Web crawlers Web pages include hyperlinks – Authoritative pages – Hubs – hyperlink-induced topic search (HITS) alg Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 22

Web Usage Mining Extraction of information from data generated through Web page visits and transactions… – data stored in server access logs, referrer logs, agent logs, and client-side cookies – user characteristics and usage profiles – metadata, such as page attributes, content attributes, and usage data Clickstream data Clickstream analysis Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 23

Web Usage Mining Web usage mining applications – Determine the lifetime value of clients – Design cross-marketing strategies across products. – Evaluate promotional campaigns – Target electronic ads and coupons at user groups based on user access patterns – Predict user behavior based on previously learned rules and users' profiles – Present dynamic information to users based on their interests and profiles… Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 24

Web Usage Mining (clickstream analysis) Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 25

Web Mining Success Stories Amazon.com, Ask.com, Scholastic.com, … Website Optimization Ecosystem Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 26

Web Mining Tools Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 27

Data Mining versus Text Mining Both seek for novel and useful patterns Both are semi-automated processes Difference is the nature of the data: – Structured versus unstructured data – Structured data: in databases – Unstructured data: Word documents, PDF files, text excerpts, XML files, and so on Text mining – first, impose structure to the data, then mine the structured data Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 28

Text Mining Concepts percent of all corporate data is in some kind of unstructured form (e.g., text) Unstructured corporate data is doubling in size every 18 months Tapping into these information sources is not an option, but a need to stay competitive Answer: text mining – A semi-automated process of extracting knowledge from unstructured data sources – a.k.a. text data mining or knowledge discovery in textual databases Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 29

Text Mining Application Area Information extraction Topic tracking Summarization Categorization Clustering Concept linking Question answering Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 30

Text Mining Terminology Unstructured or semistructured data Corpus (and corpora) Terms Concepts Stemming Stop words (and include words) Synonyms (and polysemes) Tokenizing Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 31

Text Mining Terminology Term dictionary Word frequency Part-of-speech tagging (POS) Morphology Term-by-document matrix (TDM) – Occurrence matrix Singular Value Decomposition (SVD) – Latent Semantic Indexing (LSI) Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 32

Natural Language Processing (NLP) Structuring a collection of text – Old approach: bag-of-words – New approach: natural language processing NLP is … – a very important concept in text mining – a subfield of artificial intelligence and computational linguistics – the studies of "understanding" the natural human language Syntax versus semantics based text mining Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 33

Natural Language Processing (NLP) What is “Understanding” ? – Human understands, what about computers? – Natural language is vague, context driven – True understanding requires extensive knowledge of a topic – Can/will computers ever understand natural language the same/accurate way we do? Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 34

Natural Language Processing (NLP) Challenges in NLP – Part-of-speech tagging – Text segmentation – Word sense disambiguation – Syntax ambiguity – Imperfect or irregular input – Speech acts Dream of AI community – to have algorithms that are capable of automatically reading and obtaining knowledge from text Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 35

Natural Language Processing (NLP) WordNet – A laboriously hand-coded database of English words, their definitions, sets of synonyms, and various semantic relations between synonym sets – A major resource for NLP – Need automation to be completed Sentiment Analysis – A technique used to detect favorable and unfavorable opinions toward specific products and services – CRM application Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 36

NLP Task Categories Information retrieval (IR) Information extraction (IE) Named-entity recognition (NER) Question answering (QA) Automatic summarization Natural language generation and understanding (NLU) Machine translation (ML) Foreign language reading and writing Speech recognition Text proofing Optical character recognition (OCR) Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 37

Text Mining Applications Marketing applications – Enables better CRM Security applications – ECHELON, OASIS – Deception detection (…) Medicine and biology – Literature-based gene identification (…) Academic applications – Research stream analysis Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 38

Text Mining Process The three-step text mining process Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 39

Text Mining Process Step 1: Establish the corpus – Collect all relevant unstructured data (e.g., textual documents, XML files, s, Web pages, short notes, voice recordings…) – Digitize, standardize the collection (e.g., all in ASCII text files) – Place the collection in a common place (e.g., in a flat file, or in a directory as separate files) Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 40

Text Mining Process Step 2: Create the Term–by–Document Matrix Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 41

Text Mining Process Step 2: Create the Term–by–Document Matrix (TDM), cont. – Should all terms be included? Stop words, include words Synonyms, homonyms Stemming – What is the best representation of the indices (values in cells)? Row counts; binary frequencies; log frequencies; Inverse document frequency Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 42

Text Mining Process Step 2: Create the Term–by–Document Matrix (TDM), cont. – TDM is a sparse matrix. How can we reduce the dimensionality of the TDM? Manual - a domain expert goes through it Eliminate terms with very few occurrences in very few documents (?) Transform the matrix using singular value decomposition (SVD) SVD is similar to principle component analysis Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 43

Text Mining Process Step 3: Extract patterns/knowledge – Classification (text categorization) – Clustering (natural groupings of text) Improve search recall Improve search precision Scatter/gather Query-specific clustering – Association – Trend Analysis (…) Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 44

Text Mining Tools Commercial Software Tools – SPSS PASW Text Miner – SAS Enterprise Miner – Statistica Data Miner – ClearForest, … Free Software Tools – RapidMiner – GATE – Spy-EM, … Source: Turban et al. (2011), Decision Support and Business Intelligence Systems 45

Summary This course introduces the fundamental concepts and technology of web mining. Topics include – Introduction to Web Mining, – Association Rules and Sequential Patterns, – Supervised Learning, – Unsupervised Learning, – Partially Supervised Learning, – Information Retrieval and Web Search, – Social Network Analysis, – Web Crawling, – Structured Data Extraction, – Information Integration, – Opinion Mining and Sentiment Analysis, and – Web Usage Mining. 46

References Bing Liu (2011), “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,” Springer, 2nd Edition. Efraim Turban, Ramesh Sharda, Dursun Delen (2011), “Decision Support and Business Intelligence Systems,” Pearson, Ninth Edition. 47

Contact Information 戴敏育 博士 (Min-Yuh Day, Ph.D.) 專任助理教授 淡江大學 淡江大學 資訊管理學系 資訊管理學系 電話: #2347 傳真: 研究室: i716 ( 覺生綜合大樓 ) 地址: 新北市淡水區英專路 151 號 : 網址: