Fine temporal and spatial structure of the microwave emission sources from the SSRT and NoRH observations Altyntsev A. T., Kuznetsov A.A., Meshalkina N.S.

Slides:



Advertisements
Similar presentations
NBYM 2006 A major proton event of 2005 January 20: propagating supershock or superflare? V. Grechnev 1, V. Kurt 2, A. Uralov 1, H.Nakajima 3, A. Altyntsev.
Advertisements

Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
THE IMPULSIVE X-RAY RESPONSE IN FLARE FOOTPOINTS TOMASZ MROZEK WROCLAW UNIWERSITY ASTRONOMICAL INSTITUTE POLAND.
Flare energy release and wave dynamics in nearby sunspot Solar and Stellar Flares, Observations, simulations and synergies June , 2013, Prague,
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Spatial and temporal relationships between UV continuum and hard x-ray emissions in solar flares Aaron J. Coyner and David Alexander Rice University June.
Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17 Kundu, M R., Schmahl, E J, and White, S M.
Study of Magnetic Helicity Injection in the Active Region NOAA Associated with the X-class Flare of 2011 February 15 Sung-Hong Park 1, K. Cho 1,
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
24 Oct 2001 A Cool, Dense Flare T. S. Bastian 1, G. Fleishman 1,2, D. E. Gary 3 1 National Radio Astronomy Observatory 2 Ioffe Institute for Physics and.
SOLAR MICROWAVE DRIFTING SPIKES AND SOLITARY KINETIC ALFVEN WAVES D. J. Wu, J. Huang, J. F. Tang, and Y. H. Yan The Astrophysical Journal, 665: L171–L174,
High-latitude activity and its relationship to the mid-latitude solar activity. Elena E. Benevolenskaya & J. Todd Hoeksema Stanford University Abstract.
White-Light Flares and HESSI Prospects H. S. Hudson (UCB and SPRC) March 8, 2002.
Rapid Changes in the Longitudinal Magnetic Field Associated with the July gamma -ray Flare Vasyl Yurchyshyn, Haimin Wang, Valentyna Abramenko,
Method and results. The SPIRIT sometimes observes A.M.Uralov, G.V.Rudenko Institute of Solar Terrestrial Physics, Irkutsk, Russia Comparison of 5.7 and.
Reverse Drift Bursts in the GHz Band and their Relation to X-Rays František Fárník and Marian Karlický Astronomical Institute Academy of Sciences.
Study of magnetic helicity in solar active regions: For a better understanding of solar flares Sung-Hong Park Center for Solar-Terrestrial Research New.
Magnetic Reconnection Rate and Energy Release Rate Jeongwoo Lee 2008 April 1 NJIT/CSTR Seminar Day.
EUV vs. B-field Comparisons Yingna Su Smithsonian Astrophysical Observatory Coauthours: Leon Golub, Aad Van Ballegooijen, Maurice Gros. HMI/AIA Science.
SPATIALLY RESOLVED MINUTE PERIODICITIES OF MICROWAVE EMISSION DURING A STRONG SOLAR FLARE Kupriyanova E. 1,Melnikov V. 1, Shibata K. 2,3, Shibasaki K.
Analysis of the polarization degree distribution along limb flaring loop of July 19, 2012 S. Kuznetsov 1, A. Morgachev 1 V. Melnikov 2 Radiophysical Research.
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Evolution of Flare Ribbons and Energy Release Rate Ayumi Asai 1,2, T. Yokoyama T. 3, M. Shimojo 2, S. Masuda 4, and K. Shibata 1 1:Kwasan and Hida Observatories,
Radio Remote Sensing of the Corona and the Solar Wind Steven R. Spangler University of Iowa.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Observations of quiet solar features with the SSRT and NoRH V.V. Grechnev & SSRT team Institute of Solar-Terrestrial Physics, Irkutsk, Russia Relatively.
Probing Energy Release of Solar Flares M. Prijatelj Carnegie Mellon University Advisors: B. Chen, P. Jibben (SAO)
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
1 / 10 Comparison between Microwave and Hard X-ray Spectral Indices of Temporally and Spatially Resolved Non-Thermal Sources Kiyohara, J., Takasaki, H.,
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
Simultaneous monitoring observations of solar active regions at millimeter wavelengths at radio telescopes RT-7.5 BMSTU (Russia) and RT-14 Metsahovi radio.
Observations of Eruptive Events with Two Radioheliographs, SSRT and NoRH V.V. Grechnev, A.M. Uralov, V.G. Zandanov, N.Y. Baranov, S.V. Lesovoi Kiyosato,
Observations of Moreton waves with Solar-B NARUKAGE Noriyuki Department of Astronomy, Kyoto Univ / Kwasan and Hida Observatories M2 The 4 th Solar-B Science.
Radio and X-ray Diagnostics of Energy Release in Solar Flares Thesis Committee: Tim Bastian (NRAO, thesis advisor), Dale Gary (NJIT), Zhi-Yun Li (UVa),
High-Energy Emission from a Solar Flare in Hard X-Rays and Microwaves M R Kundu 1, V V Grechnev 2, S M White 1, E J Schmahl 1, N S Meshalkina 2, L K Kashapova.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
NoRH Observations of Prominence Eruption Masumi Shimojo Nobeyama Solar Radio Observatory NAOJ/NINS 2004/10/28 Nobeyama Symposium SeiSenRyo.
Quasi-Periodic Pulsations as a Feature of the Microwave Emission Generated by Solar Single-Loop Flares Seismology of Stellar Coronal Flares, May.
2.2. The Flare Configuration Flare Ribbons and HXR Sources Overall Course of the Event Hard X-Ray Morphology M R Kundu 1, V V Grechnev 2, S M White 1,
ASAI Ayumi Kwasan Observatory, Kyoto University July 12, Evolution of Flare Ribbons and Energy Release.
Energetic electrons acceleration: combined radio and X-ray diagnostics
Evolution of Flare Ribbons and Energy Release Rate Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, and Kazunari SHIBATA 1 1:Kwasan.
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
SH 51A-02 Evolution of the coronal magnetic structures traced by X-ray and radio emitting electrons during the large flare of 3 November 2003 N.Vilmer,
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Today’s Papers 1. Flare-Related Magnetic Anomaly with a Sign Reversal Jiong Qiu and Dale E. Gary, 2003, ApJ, 599, Impulsive and Gradual Nonthermal.
Small scale energy release can play an important role in many phenomena: solar flares, coronal heating, fast solar wind etc. However, microwave observations.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Flare-Associated Oscillations Observed with NoRH Ayumi Asai (NSRO) Nobeyama Symposium 2004 : 2004/10/26.
Flare Ribbon Expansion and Energy Release Ayumi ASAI Kwasan and Hida Observatories, Kyoto University Explosive Phenomena in Magnetized Plasma – New Development.
Some EOVSA Science Issues Gregory Fleishman 26 April 2011.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
OBSERVATION OF MICROWAVE OSCILLATIONS WITH SPATIAL RESOLUTION V.E. Reznikova 1, V.F. Melnikov 1, K. Shibasaki 2, V.M. Nakariakov 3 1 Radiophysical Research.
Evolution of Flare Ribbons and Energy Release Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, Hiroki KUROKAWA 1, and Kazunari SHIBATA.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Discovery of Relativistic Positrons in Solar Flares with Microwave Imaging and Polarimetry Gregory D. Fleishman, Alexander T. Altyntsev, Natalia S. Meshalkina.
Physics of Solar Flares
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
Two Years of NoRH and RHESSI Observations: What Have We Learned
Magnetic Topology of the 29 October 2003 X10 Flare
Evolution of Flare Ribbons and Energy Release
Series of high-frequency slowly drifting structure mapping the magnetic field reconnection M. Karlicky, A&A, 2004, 417,325.
Teriaca, et al (2003) ApJ, 588, SOHO/CDS HIDA/DST 2002 campaign
Flare-Associated Oscillations Observed with NoRH
Flare Ribbon Expansion and Energy Release
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
Nobeyama, March, 2006 Collision of active regions visible in microwaves: 17 GHz Neutral Line Source as a “father” of weak and major flares some.
St. Petersburg branch of Special Astrophysical Observatory, Russia
Downflow as a Reconnection Outflow
Periodic Acceleration of Electrons in Solar Flares
Presentation transcript:

Fine temporal and spatial structure of the microwave emission sources from the SSRT and NoRH observations Altyntsev A. T., Kuznetsov A.A., Meshalkina N.S. Institute of Solar-Terrestrial Physics, Irkutsk, Russia

The great advantage of radio observations is the study of the shortest events in solar activity The bursts with fine temporal and spectral structure, SSP (with duration < 1 s), are of particular interest as they are directly connected with the processes of energy release at small temporal and spatial scales. Second, they can be used as a probe sources to study propagation effect in the low corona. The main goal : to verify emission mechanisms using observations with high temporal, spatial, and spectral resolution First observation with 1D resolution (Owens Valley): Gary D.E., Hurford G.J., Flees D.J. ApJ., 369, , ms, 2.8 GHz, beamwidth 28  location: overlying a large sunspot, polarization up to 80% electron-cyclotron maser mechanism? the same 1D-location of different pulse sources (within 1  )

Ten years' anniversary of the first publications NoRH team: 50 ms, 17 GHz, 10  (2D) Takano T., the Nobeyama Radioheliograph Group 8th Int. Symp. on Solar Terrestrial Physics, PD1-048, 36, 1994 Results: Size < 2 , location - footpoints of the flare loop SSRT team: 56 ms, 5.7 GHz, 15  (1D): Altyntsev A.T. et al. A&A, 1995, 303, 249 Results: Height of the source - up to 35 thousand km, apparent size - up to 40 , plasma emission, scattering in the low corona

Altyntsev A.T., Nakajima H., Takano T., Rudenko G.V. Solar Physics, v. 195, Issue 2, p (2000) Altyntsev A.T., Grechnev V.V., Nakajima H., et al. Proc. of Nobeyama Symp. 1998, p. 283 Simultanious observations of the subsecond structures in hard X- rays (BATSE), at 17 GHz (NoRH) and 5.7 GHz (SSRT). Two types of the subsecond brightenings: Events with the pulse-to-pulse correlation: Gyrosynchrotron emission generated by directly precipitating electrons ( keV) from tiny regions close to footpoints. Events with the poor correlation: Coherent plasma emission seems more credible explanation.

Spectral and spatial observations(SSRT, NAOC) 21 August 2002 (04:02:45.5) Left: Time profiles from SSRT - I & V, interval 6 sec, 14 ms data from NS interferometer. Right: Top: series of SSRT scans. The scan length is 240 . Maximum brightness - white. Bottom: dynamic spectrum ( GHz) from the Huairou station (NAOC, China) corresponding to this event. Dashed horizontal lines mark SSRT frequency band. 04:02:45.504:02:48.504:02:51.5

30 March 2001 a: dynamic spectrum in intensity, b: RCP & LCP time profiles from the spectropolarimeter, c, d: RCP & LCP time profiles at two frequencies recorded with SSRT simultaneously. High agreement between the time profiles Mean drift velocity and the standard deviation is 9.6 GHz/s The band of the instantaneous spectrum varies from 1 to 3%

Structure of microwave sources (SSRT, NoRH, Yohkoh) Altyntsev et al., The 10th European Solar Physics Meeting, Prague, 2002, p. 761 Background: top – 5.7 GHz, Stokes I (T Bmax = 48 MK), bottom: HXR. Contours: Stokes V at 5.7 GHz (top) and 17 GHz (bottom). White lines: I and V scans at 5.7 GHz according to the scanning direction of the SSRT/NS array: SSP solid, background burst dashed. 30 March 2001

Density structure of the flare region Top: soft X-ray image (AlMg filter) Middle: emission measure Bottom: time profile of the maximum density, assuming the emission depth of 5000 km. The densest plasma is observed in the SSP source, where the value of cm -3 is achieved. This value corresponds to the harmonic plasma emission at 5.7 GHz.

30 March Subsecond pulse recorded in two interference orders Top: dynamic spectrum (Stokes I, NAOC), middle: SSRT time profiles for LCP (dashed 5.69 GHz, solid 5.78 GHz). Bottom: positions of the SSP sources (weighted centers) at the two SSRT frequencies. The positions of the SSP sources were measured using differences of 1d scans recorded during the SSP and just before it. Drift velocity of 8 GHz/s Velocity of the source 2 · cm/s Density gradient 1.6 · 10 9 cm -3 /thousand km

LCP spatial 1D profiles of the SSP at 5.78 and 5.69 GHz Solid: 5.78 GHz, dashed: 5.69 GHz. The lowest scan represents the initial 1D profile of the background burst at 05:13:06.5. Differences of the profiles at consecutive times with the initial one are shown above. All the 1D profiles are normalized to unity. Direct measurements of the SSP spatial and temporal shifting do not contradict the standard model with the electron beam, but the measurement accuracy is insufficient.

Microwave U-type burst June 2, 2000 Altyntsev A.T. et al., A&A 411, 263, 2003 Top: time profiles of the burst. Middle: extended time profiles for the interval marked by the vertical lines at the top panel. Bottom: NAOC dynamic spectrum.

Microwave U-type burst Top: expanded time profiles detected by SSRT EW linear interferometer (5.68 GHz) for RCP & LCP. Vertical lines correspond to the crossing of the different branches. Middle: profiles detected by SSRT NS linear interferometer (5.73 GHz). Bottom: center-of-gravity positions of one-dimensional scans. Displacement of the position of the sources referring to different branches of U-structure do not exceed 3 . 2 June 2000

Full width of the U- burst spectrum 0.2 – 1.0 GHz Instantaneous bandwidth 1–5 % from mean emission frequency Drift velocities of the branches 1–10 GHz/s Interval between the recording of the U- structure branches at the SSRT frequency 50 – 270 ms 30 March September March 2001

Positions of the background burst sources in MDI magnetograms Contours – background burst (SSRT, I). Crosses in the circles – SSP Shading - MDI magnetogram Dashed lines – neutral line of magnetic fields The sources of SSP were well apart (> 7000 km) from the neutral line of the photospheric magnetic field. The signs of polarization were the same for both branches of the U-structures.

So, the usual explanation of the U-structure encounter difficulties in the cm-microwaves. We propose that U-shaped structures are produced due to an impulsive plasma heating of a part of flare loop (a few thousand km long). The existing of local heating areas in the flaring loops is confirmed by soft X-rays observations (Acton et al. 1992, PASJ, 44, L71; Feldman et al. et al. 1994, ApJ 421, 843; Doschek 1999, ApJ 527, 426) The instantaneous spectrum with a relatively narrow bandwidth can be formed in this case as the result of a density distribution pattern in this region.

Sketch of the heating region (a) and of the spectrum shape dependence (c) on the density distribution (b).

Model of the plasma density and emission frequency dynamics in the U-burst source

U-burst The observed evolution of microwave emission fits well with the concepts of the response to impulsive heating of a limited part of the magnetic loop with the diameter of several tens of kilometers and with the length of about a few thousand kilometers. Estimates of the plasma parameters: Magnetic field: 100 G, T: up to 12 MK, Density: cm -3

Zebra pattern (5 January 2003) Altyntsev et al., A&A (in press) NAOC dynamic spectrum with zebra- pattern burst. A frequency interval between strips equals 0.16 GHz Time profiles from SSRT linear arrays and NAOC spectropolarimeters at the same frequencies.

Magnetogram (color) and UV emission (contours). Zebra pattern source is situated at the intersection point of EW & NS knife-edge beams. Black: extrapolated magnetic field lines. The source of the zebra pattern is above the N-polarity region. The emission corresponds to the x-mode. The source size of the zebra pattern does not exceed 10 , and the sources of different stripes of zebra pattern coincide. Several magnetic field lines are shown. The lines were extrapolated from the magnetogram using the potential approximation. The observed zebra pattern source and 60 G point of the magnetic line (thick) are close. The height of this point is about 14 thousand km above the photosphere.

Zebra pattern Assuming the frequency interval between adjacent strips of zebra pattern to be equal to the electron cyclotron frequency in the source, B  60 G. From soft X-ray data: Te  1.1  10 7 K, Ne  cm -3. Therefore, the emission frequency is close to the double plasma frequency. Present explanations of bursts with zebra patterns assume either simultaneous generation of several cyclotron harmonics, or generation of different strips in several spatially separated sources. In our case, the spatial displacement between the sources of different zebra stripes was not detected. The most probable emission mechanism is nonlinear coupling of harmonics of Bernstein waves (with harmonic numbers about 17-18).

Emission wave mode Meshalkina et al., Sol.Phys. 221, 85, events were chosen with polarization > 30%, located -60  to +60  from the central meridian. The sources are often situated at distances < 10  from the photospheric neutral line (apparently, at tops of magnetic loops). In other events (bottom, black) subsecond pulses correspond, as a rule, to the o-mode.

Fast mode observations (SSRT, NoRH) NoRH About 10% of flares had fine fine time structures shorter than 1 sec Nakajima H., Grechnev V.V. The Yohkoh 8 th Symp., 1999 SSRT ( ) 177 events Too late for observation together with the NoRH: 58 events Common time intervals: 28 events Pulse-to-pulse correlation: 6 events Example: NoRH – corr. plot, SSRT – flux. SSP polarization at 5.7 GHz: 10% (RCP)

We thank Nobeyama Solar Group for data, fruitful discussion, assistance, opportunity to participate this meeting and the hospitality !

Thank you!