PLASMA Artificial classical atoms and molecules: from electrons to colloids and to superconducting vortices François Peeters V. Bedanov, V. Schweigert,

Slides:



Advertisements
Similar presentations
Particle’s Dynamics in Dusty Plasma with Gradients of Dust Charges
Advertisements

Rotations and quantized vortices in Bose superfluids
20 th century physics Relativity Quantum mechanics Brownian motion Particle physics Study of fields 21 st century Condensed Matter Physics electronically.
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
1 Enikö Madarassy Vortex motion in trapped Bose-Einstein condensate Durham University, March, 2007.
Superconductivity in Zigzag CuO Chains
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Ajay Kumar Ghosh Jadavpur University Kolkata, India Vortex Line Ordering in the Driven 3-D Vortex Glass Vortex Wroc ł aw 2006 Stephen Teitel University.
A Four-Electron Artificial Atom in the Hyperspherical Function Method New York City College of Technology The City University of New York R.Ya. Kezerashvili,
Quantum liquids in Nanoporous Media and on Surfaces Henry R. Glyde Department of Physics & Astronomy University of Delaware National Nanotechnology Initiative.
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov Harvard University Ehud Altman, Eugene Demler, Bertrand Halperin, Misha Lukin.
Phase Diagram of a Point Disordered Model Type-II Superconductor Peter Olsson Stephen Teitel Umeå University University of Rochester IVW-10 Mumbai, India.
Superfluid insulator transition in a moving condensate Anatoli Polkovnikov (BU and Harvard) (Harvard) Ehud Altman, (Weizmann and Harvard) Eugene Demler,
Crystal Lattice Vibrations: Phonons
Critical fluctuations of an attractive Bose gas in a double well potential (no molecules here) Marek Trippenbach, with B. Malomed, P. Ziń, J. Chwedeńczuk,
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Current “Hot” Areas of Research in Physics. Mature Physics and Hot Physics.
Ultracold Atoms Meet Quantum Gravity Boris V. Svistunov, University of Massachusetts Amherst, PHY Little is known precisely about overdamped dynamics.
STATES OF MATTER Chemistry CP.
Nucleation of Vortices in Superconductors in Confined Geometries W.M. Wu, M.B. Sobnack and F.V. Kusmartsev Department of Physics Loughborough University,
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
I. Grigorieva, L. Vinnikov, A. Geim (Manchester) V. Oboznov, S. Dubonos (Chernogolovka)
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Bose-Einstein Condensation and Superfluidity Lecture 1. T=0 Motivation. Bose Einstein condensation (BEC) Implications of BEC for properties of ground state.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Chapter 13 States of Matter Liquids and Solids Changes of State.
Non-Fermi liquid vs (topological) Mott insulator in electronic systems with quadratic band touching in three dimensions Igor Herbut (Simon Fraser University,
Phonon spectrum measured in a 1D Yukawa chain John Goree & Bin Liu.
Complex Plasmas as a Model for the Quark-Gluon-Plasma Liquid
Clustered fluid a novel state of charged quantum fluid mixtures H. Nykänen, T. Taipaleenmäki and M. Saarela, University of Oulu, Finland F. V. Kusmartsev.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Superconducting vortex avalanches D. Shantsev Åge A. F. Olsen, D. Denisov, V. Yurchenko, Y. M. Galperin, T. H. Johansen AMCS (COMPLEX) group Department.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
E. Rousseau D. Ponarine Y. Mukharsky E.Varoquaux O. Avenel J.M. Richomme CEA-DRECAM Service de Physique de l’Etat Condensé CEA-Saclay France To Quantum.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
VORTICES IN BOSE-EINSTEIN CONDENSATES TUTORIAL R. Srinivasan IVW 10, TIFR, MUMBAI 8 January 2005 Raman Research Institute, Bangalore.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Transverse optical mode in a 1-D chain J. Goree, B. Liu & K. Avinash.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Electron-hole duality and vortex formation in quantum dots Matti Manninen Jyväskylä Matti Koskinen Jyväskylä Stephanie Reimann Lund Yongle Yu Lund Maria.
Charge pumping in mesoscopic systems coupled to a superconducting lead
The Tale of Two Tangles: Dynamics of "Kolmogorov" and "Vinen" turbulences in 4 He near T=0 Paul Walmsley, Steve May, Alexander Levchenko, Andrei Golov.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Subir Sachdev Superfluids and their vortices Talk online:
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
Pinning Effect on Niobium Superconducting Thin Films with Artificial Pinning Centers. Lance Horng, J. C. Wu, B. H. Lin, P. C. Kang, J. C. Wang, and C.
Chapter 7 in the textbook Introduction and Survey Current density:
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Superfluidity and Quantum Vortices. Outline of the presentation Bose-Einstein Condensation Superfluidity Quantum Vortix.
Quantum Phase Transition of Light: A Renormalization Group Study
B. Liu, J. Goree, V. Nosenko, K. Avinash
Numerical Modeling for Semiconductor Quantum Dot Molecule Based on the Current Spin Density Functional Theory Jinn-Liang Liu Department of Applied.
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Quasi One-Dimensional Vortex Flow Driven Through Mesoscopic Channels
Presentation transcript:

PLASMA Artificial classical atoms and molecules: from electrons to colloids and to superconducting vortices François Peeters V. Bedanov, V. Schweigert, M. Kong, B. Partoens G. Piacente, J. Betouras S. Apolinario

Wigner crystal Ground state of the electron gas in metals E. Wigner, Physical Review 46, 1002 (1934) „If the electrons had no kinetic energy, they would settle in configurations which correspond to the absolute minima of the potential energy. These are close-packed lattice configurations, with energies very near to that of the body-centered lattice....“ - 2D electrons on liquid helium C.C. Grimes and G. Adams, PRL 42, 795 (1979) - Colloidal particles on surfaces or interfaces - Dusty plasmas - Charged metallic balls, …. NbSe 2 measured by STM - Superconductors  Abrikosov lattice (1957) Nobel prize in 2003

Theoretical research on colloids in India Bangalore (Indian Institute of Science): -A.K. Sood -H.R. Krishnamurthy -J. Chakrabarti Kolkata (S.N. Bose National Research Centre for Basic Sciences): -S. Sengupta

Confinement Geometrical constrainted motion -1D: microchannels -0D: artificial atoms Self-organization in reduced dimensions Reduced phase space -Diffusion (e.g. anisotropic diffusion) -Non-linear dynamics

Hamiltonian (2D) Coupling constant Hamiltonian: artificial atom Kinetic energy ConfinementInteraction Energy unit Length unit For vertical quantum dot:

1.Confinement potential 2.Typical energy scale 3.The considered artificial atoms are two-dimensional 4.The number of electrons, the size and the geometry of artificial atoms can be changed arbitrarily Differences with real atoms Real atomArtificial atom Parabolic potential Coulomb potential Real atom: Ry = 13.6 eV Vertical quantum dot: = 3 meV

Classical artificial atoms (  ) Potential energy Ground state  Energy minimalization New units:

Ground state configurations Classical configurations N Configuration , 5 7 1, 6 8 1, 7 9 2, , , , , , , , 5, 10 (1,7) (1,7,12) V.M. Bedanov and F.M. Peeters, Phys. Rev. B 49, 2667 (1994) Classical atoms (J.J. Thomson (1904)) W. T. Juan, et al, Phys. Rev. E 58, 6947 (1998) Dusty plasma Leiderer et al., Surf. Sci. 113, 405 (1982) (1,7)(1,7.12) Electrons on He surface Vortices in helium, imaged by injecting electrons that become trapped at the vortex core. (R.E. Packard) Superfluid helium Bose-Einstein condensate Condensate density MIT, Ketterle group, 2001 Superconducting vortices in a disk I.V. Grigorieva et al, Phys. Rev. Lett. 96, (2006)

Generic model (2D) for different systems, energy and length scales Dusty plasmaIons in trapsColloidsMetallic ballsVortices in SC Diameter:  m Å mm  ~ nm - m PotentialZ ~ 10 4 Yukawa Z ~ 1 Coulomb Paramagnetic Dipole K 0 (r/)  ln(r/) a/ ~ 50>> 1~ m (kg) – – – EnvironmentPlasmaVacuumLiquidAir (surface friction) Electron gas Relax. time (s) – DynamicsDamped  ~ Undamped  >> 1 Overdamped  < 1 Damped  ~ 10 Overdampd  < 1 Superparamagnetic colloidal spheres Metallic balls 10 mm M. Saint Jean et al, Europhys. Lett. 55, 45 (2001) 1kV~ I.V. Grigorieva et al, Phys. Rev. Lett. 96, (2006) vortex Decoration exp. Nb: d = 150 nm; D  1µm; T  3.5 K

Saddle point M. S. Jean et al ( Europhys. Lett. 55, )) N=6 (1,5) (6)

V.A. Schweigert and F. Peeters, Phys. Rev. B 51, 7700 (1995) Normal modes Eigenfrequencies and eigenvectors  2  6 Exp. on dusty plasma: A. Melzer, Phys. Rev. E 67, (2003)

Magic numbers  exp.

N=19 (1,6,12)N=20 (1,7,12) V.A. Schweigert and F.M. Peeters, Phys. Rev. B 51, 7700 (1995) A. Melzer, A. Piel (Kiel University) => dusty plasma (Phys. Rev. Lett. 87, (2001)) Magic number clusters

Melting: small clusters Radial fluctuations Relative angular intershell fluctuations  Anisotropic melting  Two-step melting process Experiments on paramagnetic colloids: R. Bubeck et al, Phys. Rev. B 82, 3364 (1999). V.M. Bedanov and F.M. Peeters, Phys. Rev. B 49, 2667 (1994)  1/  = k B T/

Artificial molecules Competition between electron correlations in the single dots and correlations between electrons in the different dots. d

Classical artificial molecules N=10 B. Partoens and F.M. Peeters, Phys. Rev. Lett. 79, 3990 (1997) Competition between particle correlations in the single atoms and correlations between particles in the different atoms.

Molecule 2x(3 particles) 2x(5 particles)

One dimensional: Microchannels

Phase diagram G. Piacente, B. Betouras and F.M. Peeters., PRB 69, (2004)  =r 0 / r 0 =(2q/m  0 2 ) 2/3 E 0 =(m  0 2 q 4 /2  2 ) 1/3 zig-zag transition Continuous transition  2 nd order. Q1D  channels

Institut für Physik, Universität Mainz, Ion chains M Block, A Drakoudis, H Leuthner, P Seibert and G Werth Crystalline ion structures in a Paul trap Experimental evidence for the “zig-zag” transition y x Complex plasma (B. Liu and J. Goree, Phys. Rev. Lett. 71, (2005) A. Melzer, Phys. Rev. E 73, (2006)

2  4 transition Discontinuous transition  1 st order zig-zag shift over a/4

Lorentian shaped constriction V0’V0’ 1/  Driving force Pinning and de-pinning of a Q1D system G. Piacente and F.M. Peeters, PRB 72, (2005)

Non-linear physics Increase of the density (no driving force) Lane reduction at the constriction W=60  m L=2mm  =4.55  m  2.5 Phys. Rev. Lett, 97, (2006) G. Piacente and F.M. Peeters, PRB 72, (2005) 7 lanes 6 lanes

Elastic Depinning (small values of V 0 ’) Quasi-elastic Depinning (large values of V 0 ’) f < f c  Pinningf > f c  Depinning

v  ( f – f c ) β   = 2/3 as for Infinite 2D Systems Elastic depinning Quasi-elastic depinning

Crossover from the elastic to quasi-elastic flow Tuning of the critical exponent

Conclusions 0D systems  artificial atoms -Ground state: ring structures  Thomson model -Lowest normal mode: intershell rotation (small N) vortex / antivortex rotation -Melting: anisotropic (radial / angular) Artificial molecules -‘Structural’ phase transitions 1D systems  microchannels -Chains: 1  2: zig-zag transition (continuous) 2  4: first-order transition -Constriction: tuning of the critical exponent: from elastic to quasi-elastic (no plastic depinning)

The end

Scheme of the experimental setup. Pictures are taken from the website of Lin I and A. Piel’s group Dusty Plasma (Complex Plasma) 14Mhz

Newton optimization technique position of the particle after n iteration steps  =x,y i=1,…,N The potential energy in the vicinity of this configuration can be expanded in a Taylor series: Force: Dynamic matrix: Eigenfrequencies  normal modes

Metallic balls 10 mm M. Saint Jean et al, Europhys. Lett. 55, 45 (2001) 1kV~

Real atoms versus artificial atoms 18 nm5 nm InAs/GaAs