Atlas Tier 3 Virtualization Project Doug Benjamin Duke University.

Slides:



Advertisements
Similar presentations
Ljubomir Ivaniš CPU d.o.o.
Advertisements

Status GridKa & ALICE T2 in Germany Kilian Schwarz GSI Darmstadt.
Xrootd and clouds Doug Benjamin Duke University. Introduction Cloud computing is here to stay – likely more than just Hype (Gartner Research Hype Cycle.
Duke Atlas Tier 3 Site Doug Benjamin (Duke University)
Duke and ANL ASC Tier 3 (stand alone Tier 3’s) Doug Benjamin Duke University.
GSIAF "CAF" experience at GSI Kilian Schwarz. GSIAF Present status Present status installation and configuration installation and configuration usage.
S. Gadomski, "ATLAS computing in Geneva", journee de reflexion, 14 Sept ATLAS computing in Geneva Szymon Gadomski description of the hardware the.
A comparison between xen and kvm Andrea Chierici Riccardo Veraldi INFN-CNAF.
Introduction to DoC Private Cloud
Virtualization for Cloud Computing
Virtualization A way To Begin with Virtual Reality… - Rahul Khanwani.
CVMFS AT TIER2S Sarah Williams Indiana University.
Analysis support issues, Virtual analysis facilities (ie Tier 3s in the cloud) Doug Benjamin (Duke University) on behalf of Sergey Panitkin, Val Hendrix,
Cluster computing facility for CMS simulation work at NPD-BARC Raman Sehgal.
Tier 3g Infrastructure Doug Benjamin Duke University.
Zhiling Chen (IPP-ETHZ) Doktorandenseminar June, 4 th, 2009.
US ATLAS Western Tier 2 Status and Plan Wei Yang ATLAS Physics Analysis Retreat SLAC March 5, 2007.
1 Evolution of OSG to support virtualization and multi-core applications (Perspective of a Condor Guy) Dan Bradley University of Wisconsin Workshop on.
Tier 3(g) Cluster Design and Recommendations Doug Benjamin Duke University.
Tier 3 Data Management, Tier 3 Rucio Caches Doug Benjamin Duke University.
Large Scale Test of a storage solution based on an Industry Standard Michael Ernst Brookhaven National Laboratory ADC Retreat Naples, Italy February 2,
14 Aug 08DOE Review John Huth ATLAS Computing at Harvard John Huth.
6/26/01High Throughput Linux Clustering at Fermilab--S. Timm 1 High Throughput Linux Clustering at Fermilab Steven C. Timm--Fermilab.
Developing & Managing A Large Linux Farm – The Brookhaven Experience CHEP2004 – Interlaken September 27, 2004 Tomasz Wlodek - BNL.
Support in setting up a non-grid Atlas Tier 3 Doug Benjamin Duke University.
And Tier 3 monitoring Tier 3 Ivan Kadochnikov LIT JINR
Virtualization for the LHCb Online system CHEP Taipei Dedicato a Zio Renato Enrico Bonaccorsi, (CERN)
Architecture and ATLAS Western Tier 2 Wei Yang ATLAS Western Tier 2 User Forum meeting SLAC April
Tier 3 architecture Doug Benjamin Duke University.
HEP Computing Status Sheffield University Matt Robinson Paul Hodgson Andrew Beresford.
December 26, 2015 RHIC/USATLAS Grid Computing Facility Overview Dantong Yu Brookhaven National Lab.
Cloud Computing is a Nebulous Subject Or how I learned to love VDF on Amazon.
University user perspectives of the ideal computing environment and SLAC’s role Bill Lockman Outline: View of the ideal computing environment ATLAS Computing.
Tier3 monitoring. Initial issues. Danila Oleynik. Artem Petrosyan. JINR.
Doug Benjamin Duke University. 2 ESD/AOD, D 1 PD, D 2 PD - POOL based D 3 PD - flat ntuple Contents defined by physics group(s) - made in official production.
PROOF tests at BNL Sergey Panitkin, Robert Petkus, Ofer Rind BNL May 28, 2008 Ann Arbor, MI.
PROOF Benchmark on Different Hardware Configurations 1 11/29/2007 Neng Xu, University of Wisconsin-Madison Mengmeng Chen, Annabelle Leung, Bruce Mellado,
US Atlas Tier 3 Overview Doug Benjamin Duke University.
Atlas Software Structure Complicated system maintained at CERN – Framework for Monte Carlo and real data (Athena) MC data generation, simulation and reconstruction.
Cloud Computing – UNIT - II. VIRTUALIZATION Virtualization Hiding the reality The mantra of smart computing is to intelligently hide the reality Binary->
T3g software services Outline of the T3g Components R. Yoshida (ANL)
A. Mohapatra, T. Sarangi, HEPiX-Lincoln, NE1 University of Wisconsin-Madison CMS Tier-2 Site Report D. Bradley, S. Dasu, A. Mohapatra, T. Sarangi, C. Vuosalo.
Latest Improvements in the PROOF system Bleeding Edge Physics with Bleeding Edge Computing Fons Rademakers, Gerri Ganis, Jan Iwaszkiewicz CERN.
Data Analysis w ith PROOF, PQ2, Condor Data Analysis w ith PROOF, PQ2, Condor Neng Xu, Wen Guan, Sau Lan Wu University of Wisconsin-Madison 30-October-09.
Western Tier 2 Site at SLAC Wei Yang US ATLAS Tier 2 Workshop Harvard University August 17-18, 2006.
The RAL PPD Tier 2/3 Current Status and Future Plans or “Are we ready for next year?” Chris Brew PPD Christmas Lectures th December 2007.
Meeting with University of Malta| CERN, May 18, 2015 | Predrag Buncic ALICE Computing in Run 2+ P. Buncic 1.
Platform & Engineering Services CERN IT Department CH-1211 Geneva 23 Switzerland t PES Improving resilience of T0 grid services Manuel Guijarro.
Cloud computing and federated storage Doug Benjamin Duke University.
ATLAS TIER3 in Valencia Santiago González de la Hoz IFIC – Instituto de Física Corpuscular (Valencia)
Claudio Grandi INFN Bologna Virtual Pools for Interactive Analysis and Software Development through an Integrated Cloud Environment Claudio Grandi (INFN.
ATLAS Tier3s Santiago González de la Hoz IFIC-Valencia S. González de la Hoz, II PCI 2009 Workshop, Valencia, 18/11/2010 ATLAS Tier3s (Programa de Colaboración.
Atlas Tier 3 Overview Doug Benjamin Duke University.
ATLAS Tier3 workshop at the OSG all-hand meeting FNAL 8-11 March 2010.
Status: ATLAS Grid Computing
Use of HLT farm and Clouds in ALICE
Doug Benjamin Duke University On Behalf of the Atlas Collaboration
Virtualisation for NA49/NA61
Blueprint of Persistent Infrastructure as a Service
Dag Toppe Larsen UiB/CERN CERN,
Progress on NA61/NA49 software virtualisation Dag Toppe Larsen Wrocław
Dag Toppe Larsen UiB/CERN CERN,
Diskpool and cloud storage benchmarks used in IT-DSS
GSIAF & Anar Manafov, Victor Penso, Carsten Preuss, and Kilian Schwarz, GSI Darmstadt, ALICE Offline week, v. 0.8.
Virtualisation for NA49/NA61
Virtualization in the gLite Grid Middleware software process
Ákos Frohner EGEE'08 September 2008
CernVM Status Report Predrag Buncic (CERN/PH-SFT).
Overview Introduction VPS Understanding VPS Architecture
Presentation transcript:

Atlas Tier 3 Virtualization Project Doug Benjamin Duke University

What is a Tier3? Working definition “Non pledged resources” “Analysis facilities” at a University/Institute/... Tier 3 level The name suggests that it is another layer continuing the hierarchy after Tier0, Tier1s, Tier2s...  Probably truly misleading...  Qualitative difference here: Final analysis vs simulation and reconstruction Local control vs ATLAS central control Operation load more on local resources (i.e. people) than on the central team (i.e. other people)

What is a Tier3? Comments: No concept of size (small Tier3 vs big Tier2...) Tier3s can serve (and be controlled by) a subset of the ATLAS collaboration (local or regional users). Non-pledged resources does not mean uncontrolled or incoherent Need to provide a coherent model (across ATLAS)  Small set of template to be followed while setting up a Tier3 for ATLAS users. Coherent because:  Guarantee no negative repercussions on the ATLAS Grid (service overload, additional complex manual support load) by the proliferation of these sites

Tier3: interesting features Key characteristics (issues, interesting problems) Operations  Must be simple (for the local team) (< 0.25 FTE Physicist)  Must not affect the rest of the system (hence central operations) Data management  Again simplicity  Different access pattern (analysis) I/O bound, iterative/interactive More ROOT-based analysis (PROOF?) Truly local usage  “Performances” Reliability (successful jobs / total ) Efficiency (CPU/elapsed) → events read per second

Local Tier 2 Cloud Bestman Storage Resource Manager (SRM) (fileserver) Non grid - Tier 3g configuration Batch (Condor) User jobs Users Interactive node Pathena/Prun – to grid User’s home area Atlas/common software Atlas data The Grid NFSV4 mounts User jobs Gridftp server + web server for Panda logs

Design a system to be flexible and simple to setup (1 person < 1 week) Simple to operate - < 0.25 FTE to maintain Scalable with Data volumes Fast - Process 1 TB of data over night Relatively inexpensive Run only the needed services/process Devote most resources to CPU’s and Disk Using common tools will make it easier for all Easier to develop a self supporting community. Non-grid site Tier 3 design/Philosophy

ATLAS Tier 3 Currently in EU – Tier 2/3 combined sites Most US Atlas institutions received funds from the funding agencies to support Tier 3 computing at their home institutions. The funds are set to flow shortly (1-2 months). Expect to see ~30 new (or greatly enhanced) Tier 3 sites in the US before the end of the year. Amost all of new Atlas sites will be a non-grid Tier 3

Transformative technologies By their operational requirements non-grid Tier 3 sites will require transformative ideas and solutions CernVM FS (needs long term support) Minimize effort for Atlas software releases Conditions DB Xrootd Allows for straight forward storage agregation Wide area data clustering will helps groups during analysis (couple xrootd cluster of desktops at CERN with home institution xrootd cluster)

Transformative technologies(2) Robust client tool to fetch experiment data (Dq2-get with fts data transfer) (no SRM required – simplification) Proof Efficient data analysis Tools can be used for data management at Tier 3 Virtualization / cloud computing Sharing of physical resources Better isolation of critical services Straight forward standardization (easier support)

Virtualization in Tier 3 Initial Virtualization occurred during the design phase Created a “Tier 3 in box” Intel i7-920 (4 core w/ HT) 12 GB Contained Xen VM’s - batch head node, interactive nodes, squid, nfs file server, 2 worker nodes Used to prototyping the configuration Virtualization in the current design (production) head node services Squid Cache, ldap server, Condor Collector/Negotiator, Puppet Server

Virtualization of services Atlas Tier 3 head nodes contains several services Squid Proxy Cache, Ldap Server, Condor Collector/Negotiator, Puppet Master, Xrootd Redirector, Proof Master Each service does not need its own physical machine Initially used XEN VM’s (SL 5.3) Switched to KVM with SL 5.5 (due to RH long term support of KVM) Talking with Predrag to use specialized CernVM’s Not all services work well in VM’s Xrootd redirector had erratic behaviour in XEN VM

What about worker nodes? Some Atlas Tier 3 sites have virtual machines running on worker nodes Need virtualization to run old OS (SL 4) on newer hardware (Intel i7) Conflicting performance results prevent wider adoption Need to better understand Cost/Benefit for worker node virtualization Need better tests that simulate analysis load in Tier 3’s

PROOF-Lite tests details Proof-Lite was tested on different virtual and physical machines VM tests were done mostly on acas0010 interactive login node It has Intel Xeon CPU E5335 running at 2 GHz with 8 GB of RAM and 1GB network interface VM was configured with 4 and 8 cores for comparisons It runs el5xen x86_64 kernel The test analysis jobs were run on 900 GeV data. (DATA900_MinBias_esd_r998_V17) 208 files, ESD on D3PD format events, ~19 GB in size (19,254 MB), ~17.4 kB/event Files were located on one of the ACF’s high-performance NFS server (/usatlas/groups/top), Model BlueArc …….. Test jobs were examples of Atlas min-bias analysis code For OS level performance monitoring we used Ganglia setup at ACF

PROOF-Lite on different platforms Sergey Panitkin14 It looks like PROOF-Lite running in a VM suffers severe performance penalty ~x2 worse performance than on “bare metal”

Tier 3 - Virtualization Future Tier 3 networking configured so that the worker nodes are on a private network Private network space very large – can accommodate many VM per physical box Tier 3 design includes configuration management (Puppet) that can be used for real and virtual machines Choice of KVM hypervisor allows for long term support in OS XRootD data server can run on physical hardware and server data via virtual network (to be tested)

Conclusions Tier 3 computing important for data analysis in Atlas A coherent Atlas wide effort has begun in earnest Tier 3’s are being designed according to the needs of the local research groups Striving for a design that requires minimal effort to setup and successfully run. Technologies for the Tier 3’s are being chosen and evaluated based on performance and stability for data analysis Virtualization plays an important role

Backup Slides

Head node services Head node installation via kick start Private network configuration Virtual machine installation for Puppet Master VM installation for LDAP server VM installation for Squid server VM installation for Condor Collector/Negotiator Configuration of following services on head node – Dnsmasq (provides dns services to machines on private network) – firewall (for public interface) – Add local user accounts – NFSV4 mounts for configuration files and AtlaslocalRootBase – Ganglia Client – Creation of atlasadmin account in LDAP Test Head node configuration

NFS node services Kick start file installation of OS configuration of disks Private network configuration (including NAT) and testing Installation of local accounts Creation of NFS V4 exported file systems Installation of Ganglia server and web server Installation LDAP client authentication Firewall configuration Installation/Configuration of Condor config files

Interactive node (installation) Node installation via kickstart file Private network configuration Local accounts Addition of extra libraries need for Atlas software Installation of manageTier3SW by atlasadmin account on NFS mounted disks Installation of CernVM-FS for Atlas software and conditions DB Simple Atlas Test analysis jobs (to be written)

Batch Node installation Installation via kickstart files initially Static IP address on Private network Condor software installation and configuration Installation of required additional libraries for Atlas software CernVM-FS installation/configuration Condor system testing

Proof-Lite Performance scaling in Xen VM Sergey Panitkin BNL

Introduction  An interesting use case emerged when physicists at BNL started to analyze LHC data in 2010 at the Atlas Computing Facility (ACF) at BNL  They used PROOF-Lite based analysis on interactive login nodes  Questions about analysis performance arose  This prompted a study of PROOF-Lite performance in virtual environment Sergey Panitkin23

General Information  A set of interactive login machines at Atlas Computing Facility (ACF) at Brookhaven Lab are available for user code development and interactive analysis  Currently there are 12 interactive login machines available  They are Xen virtual machines (VMs) in two different configurations  8 machines - acas000[1-8] are 2 core VMs mapped to 2 physical cores  4 machines - acas00[09-12] are 4 core VMs mapped to 4 physical cores  All VMs have similar underlying hardware, hypervisor and OS  Each node has dual quad core Intel Xeon CPUs (E5335) running at 2 GHz and 1Gbs network interface  VMs with 2 cores are configured with 3GB RAM  VMs with 4 cores are configured with 8GB RAM  Currently all VMs run el5xen x86_64 kernel  Typically remaining physical cores on the same node are used by another VM which is configured to be a part of a Condor batch queue (production). For our tests the “neighboring” batch VM was disabled to reduce interference with measurements Sergey Panitkin24

PROOF-Lite on different platforms Sergey Panitkin25 Dependence on the number of cores in VM. More cores in a VM leads to a better performance. Hardly a surprise! Performance curve has two slopes Performance keep growing with increased number of P-L workers. Why?

Hardware monitoring plots I Sergey Panitkin26 #workers Wait IO fraction is diminished for large number of workers User load close to 100% 4 cores Xen VM Large Wait IO fraction User load ~50% Note that number of simultaneously running processes does not exceed 30. Some processes are waiting for data Network traffic does not exceed 40 MB/s

Hardware monitoring plots II cores Xen VM Large Wait IO fraction User load ~50% Network traffic does not exceed ~40 MB/s

PROOF-Lite on different platforms Sergey Panitkin28 It looks like PROOF-Lite running in a VM suffers severe performance penalty ~x2 worse performance than on “bare metal”

Hardware monitoring plots III Sergey Panitkin29 8 cores “bare metal” #workers