CEOS ACC-8, Columbia, MD, April 18-19, 2012 8 th Atmospheric Composition Constellation Meeting (ACC-8), 18-19 April 2012, Columbia, MD Smoothing and Sampling.

Slides:



Advertisements
Similar presentations
Henk Eskes, William Lahoz, ESTEC, 20 Jan 2004 The role of data assimilation in atmospheric composition monitoring and forecasting Henk Eskes, William Lahoz.
Advertisements

Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 NORS/NDACC.
Evaluation of Satellite NO2 Stratospheric Columns with the SAOZ/NDACC UV-Vis Network J.-P. Pommereau 1, F. Goutail 1, A. Pazmino 1, D. Ionov 1,3, F. Hendrick.
SCILOV-10 Validation of SCIAMACHY limb operational NO 2 product F. Azam, K. Weigel, Ralf Bauer, A. Rozanov, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN,
Harmonisation of stratospheric NO 2 /O 3 column data products NORS/NDACC UV-VIS meeting, Brussels, 3-4 July F. Hendrick and M. Van Roozendael Belgian.
Validation of Tropospheric Emission Spectrometer (TES) nadir stare ozone profiles using ozonesonde measurements during Arctic Research on the Composition.
Validation of Tropospheric Emission Spectrometer (TES) nadir stare ozone profiles using ozonesonde measurements during Arctic Research on the Composition.
Page 1 OMI Science Team Meeting, Helsinki, Finland, 24 – 27 June 2008M. Van Roozendael et al. On the usability of space nadir UV-visible observations for.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft NDACC H2O workshop, Bern, July 2006 Water vapour profiles by ground-based FTIR Spectroscopy:
ISSI WG on H 2 O Bern, Switzerland Feb , 2008 Information Content from Satellites 1/24 Collocation Error budget Vertical Horizontal Perspectives.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Integrating satellite observations for assessing air quality over North America with GEOS-Chem Mark Parrington, Dylan Jones University of Toronto
Chiara Piccolo and Anu Dudhia Atmospheric, Oceanic and Planetary Physics, Department of Physics, Oxford University, Oxford, UK Predicted.
The Averaging Kernel of CO2 Column Measurements by the Orbiting Carbon Observatory (OCO), Its Use in Inverse Modeling, and Comparisons to AIRS, SCIAMACHY,
Accent-troposat 2 final workshop, 30 Sept Oct. 2008, FMI Helsinki, Finland Atmospheric bromine monoxide retrieval from space and ground-based UV-visible.
Ground-based validation of SCIAMACHY OL 3.0 Ozone Profile Data and Estimation of Altitude Shift.
Tropospheric Ozone Laminar Structures and Vertical Correlation Lengths Michael J. Newchurch 1, Guanyu Huang 1, Brad Pierce 3, John Burris 2, Shi Kuang.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Page 1 Sciamachy Validation Workshop – Bremen December 2004 Contribution to the validation of SCIAMACHY scientific data products for CO, CH 4, CO.
AQUA AURA The Berkeley High Spatial Resolution(BEHR) OMI NO2 Retrieval: Recent Trends in NO2 Ronald C. Cohen University of California, Berkeley $$ NASA.
Introduction A new methodology is developed for integrating complementary ground-based data sources to provide consistent ozone vertical distribution time.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
M. De Mazière NDACC SC 2011, Nov. 11, 2011 NORS Demonstration Network Of ground-based Remote Sensing observations in support of the GMES Atmospheric Service.
Irion et al., May 3, 2005 Page 1 Ozone validation for AIRS V4 Fredrick W. Irion, Michael R. Gunson Jet Propulsion Laboratory California Institute of Technology.
Intercomparison methods for satellite sensors: application to tropospheric ozone and CO measurements from Aura Daniel J. Jacob, Lin Zhang, Monika Kopacz.
WP3: ‘Rapid data delivery at 4 NDACC stations’ Partners: BIRA-IASB INTA Universitaet Bern Karlsruher Institut fuer Technologie CNRS Universitaet Bremen.
Algorithms and chemical data assimilation activities at Environment Canada Chris McLinden Air Quality Research Division, Environment Canada 2 nd TEMPO.
UV-vis data and NORS validation server NORS/NDACC UV-VIS meeting, Brussels, 3-4 July F. Hendrick, B. Langerock, M. Van Roozendael, and M. De Mazière.
AMFIC third progress meeting MariLiza Koukouli & Dimitris Balis Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
NORS/NDACC UV-VIS Working Group Meeting 3-4 July 2012 Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium Maud Pastel, Andrea Pazmino,
BIRA-IASB station report
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Measurements.
AMFIC final meeting LAP/Auth validation activities Dimitris Balis & MariLiza Koukouli Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Ground-based spectroscopic studies of atmospheric gaseous composition Ground-based spectroscopic studies of atmospheric gaseous composition Yana Virolainen,
Page 1 Envisat Validation Workshop, ACVT-GBMCD, MIPAS O 3 12/12/2002 Envisat Validation Workshop Atmospheric Chemistry Validation Team Ground-Based Measurements.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
ENEON first workshop Observing Europe: Networking the Earth Observation Networks in Europe September, Paris Total Carbon Column Observing Network.
Central EuropeUS East CoastJapan Global satellite observations of the column-averaged dry-air mixing ratio (mole fraction) of CO 2, denoted XCO 2, has.
HONO retrievals in Beijing and Xianghe F. Hendrick 1, K. Clémer 1,*, C. Fayt 1, C. Hermans 1, Y. Huan 1,2, T. Vlemmix 1, P. Wang 2, and M. Van Roozendael.
SPEAKERS: Gabriele Pfister, Scientist III, National Center for Atmospheric Research (NCAR) Brad Pierce, Physical Scientist, NOAA Salient Questions: 1.What.
November 2008 Philippe Keckhut Service d’Aéronomie/IPSL P. Ciais, C. Textor, M. Logan, CEA/LSCE, F ; E. G. Nisbet, RHUL, UK ; B. Buchmann,
SATELLITE OBSERVATIONS OF ATMOSPHERIC CHEMISTRY Daniel J. Jacob.
Validation of OMI NO 2 data using ground-based spectrometric NO 2 measurements at Zvenigorod, Russia A.N. Gruzdev and A.S. Elokhov A.M. Obukhov Institute.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
Rutherford Appleton Laboratory Remote Sensing Group Tropospheric ozone retrieval from uv/vis spectrometery RAL Space - Remote Sensing Group Richard Siddans,
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, 23 October 2009.
1 COST 723 WG1 Meeting 1 October 6-7, 2003 University of Bern, CH Availability of UTLS relevant SCIAMACHY data C. von.
Simulation Experiments for TEMPO Air Quality Objectives Peter Zoogman, Daniel Jacob, Kelly Chance, Xiong Liu, Arlene Fiore, Meiyun Lin, Katie Travis, Annmarie.
MACC-II analyses and forecasts of atmospheric composition and European air quality: a synthesis of observations and models Richard Engelen & the MACC-II.
Using CO observations from space to track long-range transport of pollution Daniel J. Jacob with Patrick Kim, Peter Zoogman, Helen Wang and funding from.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Barcelona, June 2009.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December D-VAR chemical data assimilation of ENVISAT chemical.
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
Upgrade from SGP V5.02 to V6.00: Conclusions from delta-validation of Diagnostic Data Set D. Hubert, A. Keppens, J. Granville, F. Hendrick, J.-C. Lambert.
Tuning the retrieval: treat or cheat Klemens Hocke, Simone Studer
Definition of SCIAMACHY Diagnostic Data Set
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
A. Pazmino, J. P. Pommereau, F. Goutail
Peter Zoogman, Daniel Jacob
Sentinel 5 Precursor Ozone Column products
Aura Science Team Meeting
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Addressing GHG Validation in GHG
MIPAS-2D water database and its validation
WP4 Advanced characterisation of NORS data products
Transition of WCRP projects beyond 2013: SPARC legacy and issues Christian von Savigny (IUP Bremen) on behalf of SPARC.
Presentation transcript:

CEOS ACC-8, Columbia, MD, April 18-19, th Atmospheric Composition Constellation Meeting (ACC-8), April 2012, Columbia, MD Smoothing and Sampling Issues Affecting Data Comparisons Jean-Christopher Lambert (1) with contributions by C. De Clercq (1), Q. Errera (1), J. Granville (1), and T. von Clarmann (2) (1) Belgian Institute for Space Aeronomy, Brussels, Belgium (2) Karlsruhe Institute of Technology, Karlsruhe, Germany

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Smoothing and sampling issues affecting data comparisons 1. Intro: The ideal observation operator? 2. Illustrations 1. Assessment of smoothing errors 2. Interpretation of comparisons 3. Optimised co-location criteria 4. Trace-tracer correlations, hydrogen budget… 3. Conclusion Reported work funded by EC FP4 ESMOS and SCUVS, EC ECRP4 COSE, BELSPO/ProDEx SECPEA and EC FP6 GEOmon. Continuation within BELSPO/ProDEx A3C and EC FP7 NORS.

CEOS ACC-8, Columbia, MD, April 18-19, 2012 The ideal observation operator? For ideal co-location criteria and ideal data assimilation…

CEOS ACC-8, Columbia, MD, April 18-19, 2012 The ideal observation operator? Air masses probed by satellites and by NDACC ground-based instruments in the vertical AND horizontal dimensions

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Observation operators used in chemical data assimilation Errera et al., Atmos. Chem. Phys., 8, 2008 Underlying assumption: H(x (t i ) ) reproduces perfectly smoothing and sampling characteristics of the observation.

CEOS ACC-8, Columbia, MD, April 18-19, 2012 von Clarmann et al, AMT, 2, 47-54, 2009 Horizontal smoothing by MIPAS: O 3 2-D horizontal Averaging Kernels for a 1D profile retrieval MIPAS processor settings ESA IPF 4.61/nominal mode

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Horizontal smoothing by MIPAS: T and H 2 O 2-D horizontal Averaging Kernels for a 1D profile retrieval von Clarmann et al, AMT, 2, 47-54, 2009 MIPAS processor settings ESA IPF 4.61/nominal mode

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Illustrations (1) Smoothing errors

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Smoothing error for O 3 column measurements – Ground-based zenith-sky observation at twilight Tarawa (Kiribati, 1°N / 173°E) Dumont d’Urville (French Antarctica, 66°S / 140°E) Kerguelen (Indian Ocean, 49°S / 70°E) Lambert, ULB, 2006

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Interpretation of comparisons Illustrations (2)

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Method described in Section 4.1 of Cortesi et al., ACP 2007 Error budget of a data comparison Error budget of MIPAS validation vs. ozonesondes

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Error budget of a data comparison Error budget of MIPAS validation vs. lidar Method described in Section 4.1 of Cortesi et al., ACP 2007

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Lambert et al., ISSI, 2012 Error budget of adata comparison Sampling differences between MIPAS and radiosondes

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Lambert et al., ISSI, 2012 Error budget of adata comparison

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Co-location criteria Illustrations (3)

CEOS ACC-8, Columbia, MD, April 18-19, 2012 UVVIS data courtesy: CNRS / UNESP (Bauru) and NIWA (Lauder) Co-location for satellite NO 2 validation Selection within 500km radius: pollution, meridian gradients, diurnal cycle… Lauder, New Zealand (45°S) – Pure stratospheric signal => meridian gradients, diurnal cycle Bauru, Brazil (22°S) – 500 km radius influenced by pollution from Sao Paulo area Lambert et al., EUMETSAT O3M-SAF TN, 2007

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Co-location for satellite NO 2 validation Selection based on observation operators UVVIS data courtesy: CNRS / UNESP (Bauru) and NIWA (Lauder) Bauru, Brazil (22°S) – Zenith-sky air mass is over the Atlantic Lauder, New Zealand (45°S) – Pure stratospheric signal => meridian gradients, diurnal cycle Lambert et al., EUMETSAT O3M-SAF TN, 2007

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Tracer-tracer correlations, hydrogen budget… Illustrations (4)

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Lambert et al., ISSI, 2012 (with figures adapted from von Clarmann et al., AMT 2009) Tracer-tracer correlations and hydrogen budget

CEOS ACC-8, Columbia, MD, April 18-19, 2012 Conclusion  Bias and noise introduced by differences in smoothing and sampling can spoil the value of a data comparison.  The problem is a combined effect of measurement properties (measurement + retrieval) and of atmospheric properties.  The problem can be multi-dimensional.  Observation operators have been/are being published for major remote sensing techniques and a few key molecules.  Consideration of smoothing/sampling issues enables:  Optimization of co-location criteria  Assessment of smoothing errors of individual observation systems  Assessment of discrepancies due to differences in smoothing and sampling of atmospheric field  More compact tracer-tracer correlations, hydrogen budgets…  Propagation of smoothing/sampling properties in L3/L4/merged data sets ?

CEOS ACC-8, Columbia, MD, April 18-19, 2012 THANK YOU !