Electroweak Symmetry Breaking in Light of LHC Results DPG Göttingen, February 28 th 2012 John Ellis, King’s College London & CERN.

Slides:



Advertisements
Similar presentations
Fourth Generation and Dynamical Electroweak Symmetry Breaking Michio Hashimoto (KEK) Kairaku-en M.H., Miransky, M.H., Miransky,
Advertisements

The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
Common Benchmarks for FCC Physics John Ellis King’s College London & FCC-ee/TLEP7 Workshop.
Programme of Lectures Motivations and introduction What we know now The future? –Supersymmetric Higgses –Higgs factories Interference in H  γγ.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
THE SEARCH FOR THE HIGGS BOSON Aungshuman Zaman Department of Physics and Astronomy Stony Brook University October 11, 2010.
Highly-Ionizing Particles in Supersymmetric Models John Ellis King’s College London & CERN.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
1 the LHC Jet & MET Searches Adam Avakian PY898 - Special Topics in LHC Physics 3/23/2009.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
Higgs, more Higgs, less Higgs, or Higgsless? John Ellis King’s College, London (& CERN)
John ELLIS, King’s College London Planck-Compatible Inflationary Models.
LHC: Higgs, less Higgs, or more Higgs? John Ellis, King’s College London (& CERN)
Searches for New Physics Motivations Examples Searches so far Setting scene for LHC 1/12.
As a test case for quark flavor violation in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Higgs, Less Higgs, Higgsless or more Higgs? ITEP Winter School Otradoe, February 2012 John Ellis, King’s College London & CERN.
What is mSUGRA? Physics in Progress, seminar talk, 11 th Feb 2010 Helmut Eberl.
Powerpoint Templates Page 1 Powerpoint Templates Looking for a non standard supersymmetric Higgs Guillaume Drieu La Rochelle, LAPTH.
From an obscure term in an equation to a headline discovery – and beyond John Ellis King’s College London (& CERN) Different Scales for Higgs Physics.
From an obscure term in an equation to a headline discovery – and beyond John Ellis King’s College London (& CERN) Higgs Physics.
Center for theoretical Physics at BUE
Beyond the Standard Model
The Higgs Boson & Beyond To Higgs or not to Higgs? just one of the questions being studied at the LHC John Ellis King’s College London (& CERN)
International Conference on Linear Colliders Paris, April 19-23, 2004 Theoretical Introduction John Ellis.
STANDARD MODEL. Theoretical Constraints on Higgs Mass Large M h → large self-coupling → blow up at low-energy scale Λ due to renormalization Small: renormalization.
Flavour and CP Violation in Supersymmetric Models John Ellis Theory Division, LHCb, Jan. 27 th, 2009.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
LHC Physics – A Theoretical Perspective Some of the questions being studied at the LHC John Ellis King’s College London (& CERN)
ILC Physics a theorist’s perspective Koji TSUMURA (Kyoto from Dec 1 st ) Toku-sui annual workshop 2013 KEK, Dec , 2013.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
Strategies to Search for Supersymmetry John Ellis Warsaw, May 18th, 2007.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
Review of the Open Questions and the Potential for Discoveries ICFA Seminar Taegu, September 2005 John Ellis, TH Division, PH Department, CERN.
Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez.
Programme of Lectures Motivations and introduction What we know now The future? –Supersymmetric Higgses –Higgs factories.
WHAT BREAKS ELECTROWEAK SYMMETRY ?. We shall find the answer in experiments at the LHC? Most likely it will tells us a lot about the physics beyond the.
STANDARD MODEL. Precision Electroweak data?? Higgs coupling blows up!! Higgs potential collapses Higgs coupling less than in Standard Model viXra Blogger’s.
John Ellis Physics Challenges at the High-Energy Frontier Where do we go from here? After the Higgs, LHC Run 1.
Lepton Physics One of the four pillars: Tera-Z, Oku-W, Mega-H, Mega-t John Ellis M = ± 0.8 GeV, ε =
Supersymmetry? Would unify matter particles and force particles Related particles spinning at different rates 0 - ½ /2 - 2 Higgs - Electron - Photon.
Overview of Supersymmetry and Dark Matter
Dynamical EWSB and Fourth Generation Michio Hashimoto (KEK) Mt. Tsukuba M.H., Miransky, M.H., Miransky, in preparation.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
1 Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK.
Nobuchika Okada The University of Alabama Miami 2015, Fort Lauderdale, Dec , GeV Higgs Boson mass from 5D gauge-Higgs unification In collaboration.
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
The Search For Supersymmetry Liam Malone and Matthew French.
Supersymmetric B-L Extended Standard Model with Right-Handed Neutrino Dark Matter Nobuchika Okada Miami Fort Lauderdale, Dec , 2010 University.
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
Monday, Apr. 7, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #20 Monday, Apr. 7, 2003 Dr. Jae Yu Super Symmetry Breaking MSSM Higgs and Their.
Impact of quark flavour violation on the decay in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
The Higgs Boson & Beyond What is Higgs telling us? What else is there? How do we find it? John Ellis King’s College London (& CERN)
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
DIS2003 A.Tilquin Searches for Physics Beyond the Standard Model at LEP What is the Standard Model Why to go beyond and how Supersymmetry Higgs sector.
Global Analysis, Combination & Complementarity The vision: explore 10 TeV scale directly (100 TeV pp) + indirectly (e + e - )
The Future Circular Collider Vision Exploration of the 10 TeV scale Direct (100 TeV pp) + Indirect (e + e - )
John Ellis The SUSY Marathon: LHC Run 1 and beyond The first big LHC discovery The second big LHC discovery?
New Flavours of LHC Physics
That Infamous Boson: from Obscure Curiosity to Holy Grail
Higgs and Supersymmetry
Recent LHC Results & Implications for New Physics Models
Complementarity between FCC-ee and FCC-hh Searches for BSM Physics
Hadron Collider Physics Long-term Outlook: Theory, 2014 and beyond
The MESSM The Minimal Exceptional Supersymmetric Standard Model
Higgser ou ne pas Higgser ?
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

Electroweak Symmetry Breaking in Light of LHC Results DPG Göttingen, February 28 th 2012 John Ellis, King’s College London & CERN

Summary of the Standard Model Particles and SU(3) × SU(2) × U(1) quantum numbers: Lagrangian:gauge interactions matter fermions Yukawa interactions Higgs potential

The Seminal Papers

The Englert-Brout-Higgs Mechanism Vacuum expectation value of scalar field Englert & Brout: June 26 th 1964 First Higgs paper: July 27 th 1964 Pointed out loophole in argument of Gilbert if gauge theory described in Coulomb gauge Accepted by Physics Letters Second Higgs paper with explicit example sent on July 31 st 1964 to Physics Letters, rejected! Revised version (Aug. 31 st 1964) accepted by PRL Guralnik, Hagen & Kibble (Oct. 12 th 1964)

The Englert-Brout-Higgs Mechanism Englert & Brout Guralnik, Hagen & Kibble

The Higgs Boson Higgs pointed out a massive scalar boson “… an essential feature of [this] type of theory … is the prediction of incomplete multiplets of vector and scalar bosons” Englert, Brout, Guralnik, Hagen & Kibble did not comment on its existence Discussed in detail by Higgs in 1966 paper

Has the Higgs been Discovered? Interesting hints around M h = 125 GeV ? CMS sees broad enhancement ATLAS prefers 125 GeV

Both compatible with m H = 125 GeV Are ATLAS & CMS seeing the Same Thing?

Combining the Information from Previous Direct Searches and Indirect Data m H = 125 ± 10 GeV Erler: arXiv: m H = ± 0.8 GeV Assuming the Standard Model

The Spin of the Higgs LHC Higher mass: angular correlations in H → ZZ decays Low mass: if H → γγ, It cannot have spin 1

Do we already know the ‘Higgs’ has Spin Zero ? Decays into γγ, so cannot have spin 1 0 or 2? If it decays into ττ or b-bar: spin 0 or 1 or orbital angular momentum Can diagnose spin via angular correlations of leptons in WW, ZZ decays

Measuring Higgs LHC Current LHC M h = 125 GeV

For M h = 120 GeV Higgs LHC & ILC

Flavour-Changing Couplings? Upper limits from FCNC, EDMs, … Quark FCNC bounds exclude observability of quark-flavour-violating h decays Lepton-flavour-violating h decays could be large: BR(τμ) or BR(τe) could be O(10)% BR(μe) must be < 2 ✕ Blankenburg, JE, Isidori: arXiv:

STANDARD MODEL

Precision Electroweak data?? Higgs coupling blows up!! Higgs potential collapses Higgs coupling less than in Standard Model viXra Blogger’s Combination of Dec.13 th Data There must be New Physics Beyond the Standard Model

Heretical Interpretation of EW Data Do all the data tell the same story? e.g., A L vs A H What attitude towards LEP, NuTeV? What most of us think Chanowitz

Higgs + Higher-Order Operators Precision EW data suggest they are small: why? But conspiracies are possible: m H could be large, even if believe EW data …? Do not discard possibility of heavy Higgs Corridor to heavy Higgs? Barbieri, Strumia

Elementary Higgs or Composite? Higgs field: ≠ 0 Quantum loop problems Fermion-antifermion condensate Just like QCD, BCS superconductivity Top-antitop condensate? needed m t > 200 GeV New technicolour force? -Heavy scalar resonance? -Inconsistent with precision electroweak data? Cut-off Λ ~ 1 TeV with Supersymmetry? Cutoff Λ = 10 TeV

Interpolating Models Combination of Higgs boson and vector ρ Two main parameters: m ρ and coupling g ρ Equivalently ratio weak/strong scale: g ρ / m ρ Grojean, Giudice, Pomarol, Rattazzi

What if the Higgs is not quite a Higgs? Tree-level Higgs couplings ~ masses –Coefficient ~ 1/v Couplings ~ dilaton of scale invariance Broken by Higgs mass term –μ 2, anomalies –Cannot remove μ 2 (Coleman-Weinberg) –Anomalies give couplings to γγ, gg Generalize to pseudo-dilaton of new (nearly) conformal strongly-interacting sector Pseudo-Goldstone boson of scale symmetry

A Phenomenological Profile of a Pseudo-Dilaton Universal suppression of couplings to Standard Model particles: a = c = v/V Effective potential: Self-couplings: Γ(gg) may be enhanced Γ(γγ) may be suppressed Compilation of constraints Campbell, JE, Olive: arXiv: Updated with Dec. 11 constraints Pseudo-baryons as dark matter?

General Analysis of ‘Less Higgs’ Models Parameterization of effective Lagrangian: Fits a ≠ c Azatov, Contino, Galloway: arXiv: Espinosa, Grojean, Muhlleitner, Trott: arXiv:

Theoretical Constraints on Higgs Mass Large M h → large self-coupling → blow up at low-energy scale Λ due to renormalization Small: renormalization due to t quark drives quartic coupling < 0 at some scale Λ → vacuum unstable Vacuum could be stabilized by supersymmetry Espinosa, JE, Giudice, Hoecker, Riotto, arXiv LHC 95% exclusion

The LHC will Tell the Fate of the SM Espinosa, JE, Giudice, Hoecker, Riotto Examples with LHC measurement of m H = 120 or 115 GeV

How to Stabilize a Light Higgs Boson? Top quark destabilizes potential: introduce introduce stop-like scalar: Can delay collapse of potential: But new coupling must be fine-tuned to avoid blow-up: Stabilize with new fermions: –just like Higgsinos Very like Supersymmetry! JE + D. Ross

Loop Corrections to Higgs Mass 2 Consider generic fermion and boson loops: Each is quadratically divergent: ∫ Λ d 4 k/k 2 Leading divergence cancelled if Supersymmetry! 2 x 2

Other Reasons to like Susy It enables the gauge couplings to unify It predicts m H < 130 GeV As suggested by EW data

Astronomers say that most of the matter in the Universe is invisible Dark Matter Supersymmetric particles ? We shall look for them with the LHC Dark Matter in the Universe

Particles + spartners 2 Higgs doublets, coupling μ, ratio of v.e.v.’s = tan β Unknown supersymmetry-breaking parameters: Scalar masses m 0, gaugino masses m 1/2, trilinear soft couplings A λ, bilinear soft coupling B μ Often assume universality: Single m 0, single m 1/2, single A λ, B μ : not string? Called constrained MSSM = CMSSM Minimal supergravity also predicts gravitino mass m 3/2 = m 0, B μ = A λ – m 0 Minimal Supersymmetric Extension of Standard Model (MSSM)

Classic Supersymmetric Signature Missing transverse energy carried away by dark matter particles

Supersymmetry Searches in CMS Jets + missing energy (+ lepton(s))

Supersymmetry Searches in ATLAS Jets + missing energy + 0 lepton

Impact of LHC on the CMSSM Excluded because stau LSP Excluded by b  s gamma Preferred (?) by latest g - 2 Assuming the lightest sparticle is a neutralino WMAP constraint on CDM density tan β = 10 ✕ g μ - 2 LHC tan β = 55 ✓ g μ - 2 JE, Olive & Spanos

Favoured values of M h ~ 119 GeV: Range consistent with evidence from LHC ! Higgs mass χ 2 price to pay if M h = 125 GeV is < 2 Buchmueller, JE et al: arXiv:

….. pre-Higgs ___ % & 95% CL contours Buchmueller, JE et al: arXiv:

Favoured values of gluino mass significantly above pre-LHC, > 2 TeV Gluino mass --- pre-Higgs ___ 125 … no g-2 Buchmueller, JE et al: arXiv:

Favoured values of B s  μ + μ - above Standard Model Buchmueller, JE et al: arXiv: Bs μ+μ-Bs μ+μ- --- pre-Higgs ___ 125 … no g-2

The Stakes in the Higgs Search How is gauge symmetry broken? Is there any elementary scalar field? Would have caused phase transition in the Universe when it was about seconds old May have generated then the matter in the Universe: electroweak baryogenesis A related inflaton might have expanded the Universe when it was about seconds old Contributes to today’s dark energy: too much!

Conversation with Mrs Thatcher: 1982 What do you do? Think of things for the experiments to look for, and hope they find something different Wouldn’t it be better if they found what you predicted? Then we would not learn anything!

Be careful what you wish for!